In Situ Condensation Passivation of Organosilane Cross-Linker Enables Inverted Organic Solar Cells near 19% Efficiency

材料科学 钝化 冷凝 能量转换效率 光伏系统 有机太阳能电池 热稳定性 化学工程 纳米技术 光电子学 聚合物 图层(电子) 复合材料 物理 生物 工程类 热力学 生态学
作者
Shu‐Fang Li,Zhengquan Fu,Weikun Chen,Xinhui Lu,Juanjuan Xiang,Jiangbin Zhang,Kai Han,Jun Yuan,Yingping Zou
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (24): 35652-35660
标识
DOI:10.1021/acsami.5c08367
摘要

Inverted organic solar cells (OSCs) exhibit excellent stability, making them promising candidates for practical photovoltaic applications. However, the power conversion efficiency (PCE) of inverted devices still falls behind that of conventionally structured OSCs. In this work, a practical strategy for enhancing inverted device performance is demonstrated by introducing an organosilane-based passivation layer onto the ZnO transport layer via solution processing and thermal cross-linking. During the in situ hydrolysis and condensation process, organosilanes can interact with the oxygen vacancy on the ZnO film to form Zn-O-Si bonds, thereby substantially reducing the surface defects of the ZnO film. Meanwhile, the Si-O-Si network structure formed by the condensation of organosilanes effectively improves hydrophobicity of the interface between ZnO and the active layer, thereby enhancing the stability of the device. When vinyltrimethoxysilane (VTMS) is employed as the passivation layer, the inverted OSCs based on the PM6: BTP-eC9 system achieve a maximum PCE of 18.92%. Furthermore, the VTMS/ZnO-based devices exhibited outstanding stability, owing to the suppressed photocatalytic activity of the ZnO film and the enhanced interfacial hydrophobicity induced by the Si-O-Si network formed through organosilane cross-linking. Following 4224 h of storage in a nitrogen-filled glovebox, the optimized device based on VTMS/ZnO retains 97.42% of its initial PCE. After 330 h of UV exposure, the optimized device could still maintains 91.06% of its initial PCE. These results demonstrate that this method holds great potential for practical applications in high-efficiency and stable inverted OSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助含糊的依白采纳,获得10
刚刚
小七发布了新的文献求助10
刚刚
王玉完成签到 ,获得积分10
刚刚
刚刚
科研通AI6应助乐正三问采纳,获得10
刚刚
科研通AI6应助乐正三问采纳,获得20
1秒前
大个应助Vivifang采纳,获得10
1秒前
JamesPei应助BeSideWorld采纳,获得10
1秒前
1秒前
ATOM发布了新的文献求助10
2秒前
上官若男应助Harlotte采纳,获得10
2秒前
2秒前
咖啡续命发布了新的文献求助10
3秒前
狂野大有发布了新的文献求助10
3秒前
单纯的问夏完成签到,获得积分10
3秒前
3秒前
4秒前
小迪迦奥特曼完成签到,获得积分10
4秒前
星辰大海应助谨慎小虾米采纳,获得10
5秒前
5秒前
小马甲应助再学一分钟采纳,获得10
5秒前
乐乐发布了新的文献求助10
5秒前
6秒前
SciGPT应助有你就足够采纳,获得10
6秒前
6秒前
6秒前
天天快乐应助木子采纳,获得10
7秒前
酷波er应助dong采纳,获得10
7秒前
7秒前
胡柚完成签到,获得积分10
7秒前
FANG发布了新的文献求助10
7秒前
8秒前
8秒前
风中白易完成签到,获得积分10
8秒前
慧1111111发布了新的文献求助10
8秒前
虚心宝川发布了新的文献求助10
8秒前
詹思宇完成签到 ,获得积分20
8秒前
超级的访天完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827