Hierarchical bottleneck for heterogeneous graph representation

瓶颈 计算机科学 信息瓶颈法 图形 代表(政治) 理论计算机科学 语义学(计算机科学) 节点(物理) 路径(计算) 人工智能 数据挖掘 相互信息 政治 政治学 法学 嵌入式系统 程序设计语言 结构工程 工程类
作者
Yunfei He,Li Jun Meng,Jian Ma,Yiwen Zhang,Qun Wu,Weiping Ding,Fei Yang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:667: 120422-120422 被引量:1
标识
DOI:10.1016/j.ins.2024.120422
摘要

Heterogeneous graphs (HGs) contain many nodes and their interaction relationships, which can model complex systems and provide rich semantic and structural information for task execution. Among these, HG representation stands as the fundamental and pivotal component. Existing HG representation methods primarily employ graph neural networks to acquire the semantics of nodes along various meta-paths and fuse them to represent the nodes. The most prevalent HG representation methods encompass two steps: semantic information extraction within meta-paths and semantic fusion between meta-paths. However, these methods overlooked the consideration of node heterogeneity within meta-paths and the simultaneous semantic correlation between meta-paths. Specifically, node heterogeneity within meta-paths signifies that the meta-path-based neighbors do not consistently contain information that positively influences the target node, and the semantic correlation between meta-paths indicates that different meta-path spaces are not entirely independent. Disregarding either of these issues leads to the propagation of irrelevant or redundant information and potential disruption of HG embedding. Consequently, in this study, we propose the HBHG, which is a hierarchical bottleneck for heterogeneous graph representation. HBHG primarily employs the information bottleneck (IB) as a guiding principle, constraining the propagation of irrelevant information within and between meta-paths while preserving relevant information. The central concept of the IB revolves around viewing model learning as the preservation of relevant information and compression of irrelevant information, accomplished by minimizing the dependency between input and hidden features through mutual information (MI) and maximizing the dependency between hidden features and ground-truth. Considering the complexity associated with MI estimation, this paper introduces a novel dependency index, namely the Hilbert-Schmidt independence criterion (HSIC), which offers ease of calculation. Specifically, HBHG comprises two primary components: a semantic bottleneck within meta-paths and a semantic bottleneck between meta-paths. The semantic bottleneck within meta-paths relies primarily on the HSIC-based limitations of dependencies at different layers of the graph neural network on various meta-paths, thereby maximizing the extraction of information relevant to the target node from neighboring nodes. The semantic bottleneck between meta-paths enables flexible extraction and fusion of semantic information based on downstream tasks, achieved by managing the trade-off of dependencies with HSIC between different meta-path semantic spaces. In summary, the proposed HBHG integrates hierarchical bottleneck constraints within and between meta-paths. This integration serves to maximize the aggregation of relevant information while effectively compressing irrelevant information, thereby enhancing the quality of heterogeneous graph embedding. The effectiveness of HBHG was validated through performance and ablation experiments conducted on multiple datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七个小矮人完成签到,获得积分10
刚刚
莉莉斯完成签到 ,获得积分10
1秒前
李健应助端庄南莲采纳,获得30
1秒前
wanci应助jun采纳,获得10
2秒前
大冰完成签到,获得积分10
4秒前
共享精神应助一沙采纳,获得10
5秒前
兰真纯洁发布了新的文献求助10
7秒前
田様应助秀丽的冬瓜采纳,获得10
7秒前
科研通AI5应助糯米团子采纳,获得10
9秒前
5yy完成签到,获得积分20
12秒前
15秒前
19秒前
19秒前
秀丽的冬瓜完成签到,获得积分10
21秒前
ymX完成签到,获得积分10
22秒前
Tangyartie完成签到 ,获得积分10
22秒前
小金星星完成签到 ,获得积分10
22秒前
nenoaowu完成签到,获得积分10
23秒前
April完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
光轮2000发布了新的文献求助10
29秒前
34秒前
123完成签到,获得积分10
36秒前
Lucas应助李爱笑采纳,获得10
37秒前
shanbaibai发布了新的文献求助100
38秒前
39秒前
ding应助birdy采纳,获得10
39秒前
糯米团子发布了新的文献求助10
40秒前
乖小俏完成签到,获得积分10
43秒前
万能图书馆应助参上采纳,获得10
46秒前
天天快乐应助ting采纳,获得10
46秒前
47秒前
无奈皮卡丘完成签到 ,获得积分10
48秒前
糯米团子完成签到,获得积分10
48秒前
鹿子默完成签到,获得积分10
48秒前
48秒前
49秒前
dm11完成签到,获得积分10
51秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843913
求助须知:如何正确求助?哪些是违规求助? 3386217
关于积分的说明 10544489
捐赠科研通 3107034
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774434