How to reduce enthalpy in the interfacial solar water generation system for enhancing efficiency?

材料科学 热力学 工程物理 工艺工程 纳米技术 化学工程 工程类 物理
作者
Xuemin Geng,Peng Yang,Yanfen Wan
出处
期刊:Nano Energy [Elsevier]
卷期号:: 109434-109434
标识
DOI:10.1016/j.nanoen.2024.109434
摘要

Solar-driven water generation especially interfacial solar steam generation (ISSG) technology holds the potential of revolutionizing fresh water production and resolving energy crises. With ISSG system operating at the air-liquid interface, it enables localized solar-to-heat conversion and restrictive thermal energy losses. Advances in optimized material design in parallel to engineered evaporator construction, and adjustable energy management now allow ISSG to obtain excellent light absorption, evaporation efficiency and outstanding heat regulation for pursuing highly efficient low-energy-consume water production. The parallel development of enthalpy reduction technology, as an effective avenue towards high-performance ISSG system, was imperative and has gained wide recognition. In this review, the conceptual designs and fundamental mechanism of ISSG technology pertaining to the current progress in materials design, steamer construction and energy regulation applications will be presented. And this article will highlight recent progress on how to reduce evaporation enthalpy involving the enthalpy reduction principle, the implementation and measurements of their influence on ISSG technology. This article aims to provide a comprehensive review on reducing enthalpy strategies in ISSG system and suggest directions to further improve the overall efficiency through the judicious choice of materials, while synchronously capitalizing the increase of intermediate water, establishment of microstructures, regulation of the surface wetting state and water activation of electricity to realize concurrent high evaporation rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青石巷发布了新的文献求助10
刚刚
好好完成签到 ,获得积分10
2秒前
2秒前
KONGYU完成签到,获得积分10
4秒前
ygqhy完成签到 ,获得积分10
5秒前
8秒前
zhongu发布了新的文献求助10
8秒前
11秒前
13秒前
乖123完成签到,获得积分20
13秒前
无奈秋荷完成签到,获得积分20
13秒前
virgil应助青石巷采纳,获得10
13秒前
felix发布了新的文献求助10
14秒前
白鸽鸽完成签到,获得积分10
16秒前
缓慢冬莲发布了新的文献求助10
19秒前
1231313完成签到,获得积分10
19秒前
Rashalin完成签到,获得积分10
20秒前
orixero应助jusser采纳,获得10
21秒前
disciple发布了新的文献求助10
22秒前
Ceceliayyy完成签到 ,获得积分10
23秒前
小王完成签到 ,获得积分10
24秒前
splash完成签到,获得积分10
27秒前
充电宝应助小欣采纳,获得10
29秒前
CipherSage应助disciple采纳,获得10
30秒前
默默小鸽子关注了科研通微信公众号
30秒前
shinysparrow应助enshuo采纳,获得10
33秒前
脑洞疼应助enshuo采纳,获得30
33秒前
Epiphany完成签到,获得积分10
33秒前
37秒前
霸气雪珍完成签到,获得积分10
38秒前
39秒前
40秒前
peiling完成签到,获得积分20
40秒前
peiling发布了新的文献求助10
44秒前
44秒前
长情丹妗发布了新的文献求助10
45秒前
呀12345发布了新的文献求助10
47秒前
51秒前
53秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2416425
求助须知:如何正确求助?哪些是违规求助? 2109229
关于积分的说明 5333914
捐赠科研通 1836397
什么是DOI,文献DOI怎么找? 914701
版权声明 561063
科研通“疑难数据库(出版商)”最低求助积分说明 489152