A modified YOLOv5 architecture for efficient fire detection in smart cities

计算机科学 任务(项目管理) 目标检测 人工智能 班级(哲学) 火灾探测 假警报 恒虚警率 对象(语法) 财产(哲学) 机器学习 模式识别(心理学) 建筑工程 系统工程 工程类 哲学 认识论
作者
Hikmat Yar,Zulfiqar Ahmad Khan,Fath U Min Ullah,Waseem Ullah,Sung Wook Baik
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:231: 120465-120465 被引量:60
标识
DOI:10.1016/j.eswa.2023.120465
摘要

Fire disasters are considered to be among the most harmful hazards, causing fatalities, ecological and economic chaos, property damage, and they can even impact climate change. Early fire detection is necessary to overcome these losses and disruption. Fire detection using vision sensors is a promising research area that has gained significant attention from computer vision experts. Traditionally, low-level colour features were used for fire detection but they have now been superseded by effective deep learning models that achieve higher accuracy. However, these models also suffer from a higher false alarm rate, due to the fact that they treat fire detection as a classification task where the entire image is classified into a single class and the region of the proposal stage is ignored. Furthermore, the time complexity and model size limit these models from real-world implementation. To overcome these challenges, we propose a modified YOLOv5s model that integrates a Stem module in the backbone, replaces larger kernels with smaller ones in the SPP (Neck), and adds the P6 module into the head. This model achieves promising results with lower complexity and smaller model size, and is able to detect both small and large fire regions in images. Moreover, we contribute a medium-scale fire dataset that consists of three classes (i.e. vehicle fire, building fire, and indoor electric fire), with manual annotation according to the object detection model, where the dataset is publicly available for the research purposes. Finally, for fair evaluation, we re-implement 12 different state-of-the-art object detection models, including the proposed model, and trained them over a self-created dataset. We found that the proposed model achieved better detection performance and applicable in real-world scenario. Our codes and dataset is publicly available at https://github.com/Hikmat-Yar/Modified-YOLOv5-Code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Chem34发布了新的文献求助10
1秒前
orixero应助小何0404采纳,获得10
1秒前
13333完成签到,获得积分10
2秒前
难过的小甜瓜完成签到 ,获得积分10
2秒前
Xu完成签到,获得积分10
2秒前
月月鸟完成签到,获得积分10
3秒前
悦耳亦云发布了新的文献求助30
3秒前
3秒前
3秒前
阿旺完成签到,获得积分10
4秒前
SimonL发布了新的文献求助10
5秒前
6秒前
6秒前
打打应助nenoaowu采纳,获得10
6秒前
甜甜完成签到,获得积分10
6秒前
6秒前
月月鸟发布了新的文献求助10
6秒前
脑洞疼应助大惊采纳,获得10
6秒前
香菜完成签到,获得积分10
7秒前
科研通AI5应助小七采纳,获得10
7秒前
东东完成签到,获得积分10
8秒前
8秒前
科研通AI5应助H1998采纳,获得10
8秒前
Clover完成签到,获得积分10
9秒前
小禾完成签到,获得积分10
9秒前
ttttt应助wangye采纳,获得10
9秒前
10秒前
Hmn发布了新的文献求助10
10秒前
10秒前
爱书儿的小周完成签到,获得积分10
10秒前
10秒前
Vegccc完成签到,获得积分10
11秒前
徐莉莉发布了新的文献求助10
11秒前
zisezhaoyan发布了新的文献求助10
11秒前
香蕉觅云应助巴巴布拉博采纳,获得10
12秒前
青木蓝完成签到,获得积分10
12秒前
循环发布了新的文献求助10
12秒前
怕黑的班完成签到,获得积分10
13秒前
满意代萱完成签到 ,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838071
求助须知:如何正确求助?哪些是违规求助? 3380330
关于积分的说明 10513807
捐赠科研通 3099923
什么是DOI,文献DOI怎么找? 1707265
邀请新用户注册赠送积分活动 821577
科研通“疑难数据库(出版商)”最低求助积分说明 772765