清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Inferring spatial transcriptomics markers from whole slide images to characterize metastasis-related spatial heterogeneity of colorectal tumors: A pilot study

转移 空间异质性 结直肠癌 计算机科学 肿瘤异质性 空间分析 遗传异质性 计算生物学 癌症 生物 基因 地理 遥感 遗传学 表型 生态学
作者
Michael Fatemi,Eric Feng,Cyril Sharma,Zarif Azher,Tarushii Goel,Ojas A. Ramwala,Scott Palisoul,Rachael E. Barney,Laurent Perreard,Fred Kolling,Lucas A. Salas,Brock C. Christensen,Gregory J. Tsongalis,Louis Vaickus,Joshua Levy
出处
期刊:Journal of pathology informatics [Medknow Publications]
卷期号:14: 100308-100308 被引量:11
标识
DOI:10.1016/j.jpi.2023.100308
摘要

Over 150 000 Americans are diagnosed with colorectal cancer (CRC) every year, and annually over 50 000 individuals will die from CRC, necessitating improvements in screening, prognostication, disease management, and therapeutic options. Tumor metastasis is the primary factor related to the risk of recurrence and mortality. Yet, screening for nodal and distant metastasis is costly, and invasive and incomplete resection may hamper adequate assessment. Signatures of the tumor-immune microenvironment (TIME) at the primary site can provide valuable insights into the aggressiveness of the tumor and the effectiveness of various treatment options. Spatially resolved transcriptomics technologies offer an unprecedented characterization of TIME through high multiplexing, yet their scope is constrained by cost. Meanwhile, it has long been suspected that histological, cytological, and macroarchitectural tissue characteristics correlate well with molecular information (e.g., gene expression). Thus, a method for predicting transcriptomics data through inference of RNA patterns from whole slide images (WSI) is a key step in studying metastasis at scale. In this work, we collected tissue from 4 stage-III (pT3) matched colorectal cancer patients for spatial transcriptomics profiling. The Visium spatial transcriptomics (ST) assay was used to measure transcript abundance for 17 943 genes at up to 5000 55-micron (i.e., 1–10 cells) spots per patient sampled in a honeycomb pattern, co-registered with hematoxylin and eosin (H&E) stained WSI. The Visium ST assay can measure expression at these spots through tissue permeabilization of mRNAs, which are captured through spatially (i.e., x–y positional coordinates) barcoded, gene specific oligo probes. WSI subimages were extracted around each co-registered Visium spot and were used to predict the expression at these spots using machine learning models. We prototyped and compared several convolutional, transformer, and graph convolutional neural networks to predict spatial RNA patterns at the Visium spots under the hypothesis that the transformer- and graph-based approaches better capture relevant spatial tissue architecture. We further analyzed the model's ability to recapitulate spatial autocorrelation statistics using SPARK and SpatialDE. Overall, the results indicate that the transformer- and graph-based approaches were unable to outperform the convolutional neural network architecture, though they exhibited optimal performance for relevant disease-associated genes. Initial findings suggest that different neural networks that operate on different scales are relevant for capturing distinct disease pathways (e.g., epithelial to mesenchymal transition). We add further evidence that deep learning models can accurately predict gene expression in whole slide images and comment on understudied factors which may increase its external applicability (e.g., tissue context). Our preliminary work will motivate further investigation of inference for molecular patterns from whole slide images as metastasis predictors and in other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助10
1秒前
杪夏二八完成签到 ,获得积分10
4秒前
5秒前
幽默的南珍完成签到 ,获得积分10
6秒前
7秒前
啦啦啦完成签到,获得积分20
8秒前
twk发布了新的文献求助10
10秒前
LZQ发布了新的文献求助10
11秒前
那那发布了新的文献求助10
12秒前
mey310完成签到 ,获得积分10
15秒前
ding应助twk采纳,获得10
17秒前
今天只做一件事应助那那采纳,获得10
21秒前
典雅问寒应助那那采纳,获得10
21秒前
今天只做一件事应助那那采纳,获得10
21秒前
今天只做一件事应助那那采纳,获得10
21秒前
千葉应助那那采纳,获得10
21秒前
今天只做一件事应助那那采纳,获得10
21秒前
达克赛德完成签到 ,获得积分10
22秒前
LZQ完成签到,获得积分0
24秒前
25秒前
火鸟发布了新的文献求助10
29秒前
37秒前
松柏完成签到 ,获得积分10
41秒前
42秒前
tyfelix发布了新的文献求助10
46秒前
Lxx完成签到 ,获得积分10
49秒前
nicolaslcq完成签到,获得积分10
53秒前
无辜的行云完成签到 ,获得积分0
1分钟前
x银河里完成签到 ,获得积分10
1分钟前
专一的从波完成签到 ,获得积分10
1分钟前
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
包容的忆灵完成签到 ,获得积分10
1分钟前
1分钟前
LELE完成签到 ,获得积分10
1分钟前
1分钟前
杨宁完成签到 ,获得积分10
1分钟前
1分钟前
旺大财完成签到 ,获得积分10
1分钟前
et发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244288
捐赠科研通 3045435
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759541