Surface modification of boron nitride by reduced graphene oxide for preparation of dielectric material with enhanced dielectric constant and well-suppressed dielectric loss

材料科学 电介质 介电损耗 石墨烯 复合材料 表面改性 氮化硼 高-κ电介质 环氧树脂 纳米复合材料 氧化物 聚合物 化学工程 光电子学 纳米技术 冶金 工程类
作者
Kai Wu,Chuxin Lei,Weixing Yang,Songgang Chai,Feng Chen,Qiang Fu
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:134: 191-200 被引量:116
标识
DOI:10.1016/j.compscitech.2016.08.015
摘要

Abstract Adding conductive filler is an effective way to enhance the dielectric constant while usually also increases the dielectric loss of polymer. In this study, we demonstrated that polymer composites with much improved dielectric constant while maintaining ultra-low dielectric loss could be achieved via using hybrid filler and controlling the dispersion of conductive filler in polymer matrix. To do this, the graphene oxide was designed to be immobilized on the surface of large-sized insulating hexagonal boron nitride (h-BN) via electrostatic self-assembly, and afterwards introducing this hybrid filler into epoxy accompanied with chemical reduction. In this case, since the reduced graphene oxide (rGO) sheets were fixed on the surface of h-BN, rGO sheets were well separated from each other even at high loading. Hence not only significantly enhanced dielectric constant was observed, but also a very low dielectric loss comparable to that of neat epoxy was achieved. This low dielectric loss was believed to be ascribed to both embedded insulating network of h-BN to inhibit the mobility of charge carrier and well-separated rGO sheets via immobilization. In addition to obviously improved dielectric properties, the nanocomposites also exhibited good thermal conductivity. We believe that this special structure will provide a new thought for fabricating dielectric materials with much enhanced dielectric constant as well as well-suppressed dielectric loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guang98765完成签到,获得积分10
刚刚
2秒前
Rookie发布了新的文献求助10
2秒前
3秒前
烟花应助qingxuan采纳,获得10
4秒前
Transition完成签到,获得积分10
4秒前
yi完成签到,获得积分10
5秒前
bkagyin应助威武发带采纳,获得30
5秒前
共享精神应助传统的依珊采纳,获得10
5秒前
橙子发布了新的文献求助10
5秒前
6秒前
tori发布了新的文献求助10
7秒前
玄同发布了新的文献求助10
7秒前
华仔应助Rookie采纳,获得10
7秒前
9秒前
阔达萤发布了新的文献求助10
10秒前
10秒前
11秒前
13秒前
13秒前
14秒前
14秒前
玄同完成签到,获得积分10
14秒前
LYJ完成签到,获得积分10
14秒前
Richard完成签到,获得积分10
15秒前
Xaoyie发布了新的文献求助10
15秒前
15秒前
16秒前
dd完成签到,获得积分10
16秒前
16秒前
拼搏半梦发布了新的文献求助10
16秒前
myh完成签到,获得积分20
17秒前
WJJ发布了新的文献求助10
18秒前
XiePeiting发布了新的文献求助10
18秒前
19秒前
星星发布了新的文献求助10
19秒前
yuanying发布了新的文献求助10
20秒前
20秒前
田様应助方向采纳,获得10
20秒前
科研女郎完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299901
求助须知:如何正确求助?哪些是违规求助? 4447967
关于积分的说明 13844251
捐赠科研通 4333585
什么是DOI,文献DOI怎么找? 2378948
邀请新用户注册赠送积分活动 1374119
关于科研通互助平台的介绍 1339733