A Computational Method for the Identification of Endolysins and Autolysins

溶解循环 赖氨酸 自溶素 细菌细胞结构 微生物学 细胞壁 肽聚糖 生物 细菌 生物化学 噬菌体 病毒学 大肠杆菌 遗传学 病毒 基因
作者
Lei Xu,Guangmin Liang,Baowen Chen,Xu Tan,Huaikun Xiang,Changrui Liao
出处
期刊:Protein and Peptide Letters [Bentham Science Publishers]
卷期号:27 (4): 329-336 被引量:11
标识
DOI:10.2174/0929866526666191002104735
摘要

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助dpk采纳,获得10
刚刚
Cynthia完成签到,获得积分10
刚刚
李健的小迷弟应助yishang采纳,获得10
2秒前
崩坏的幻想完成签到,获得积分10
2秒前
6秒前
ZTK完成签到,获得积分10
8秒前
Vaseegara完成签到 ,获得积分10
9秒前
pluto应助威武的匕采纳,获得10
10秒前
CodeCraft应助stick采纳,获得10
14秒前
快飞飞完成签到 ,获得积分10
17秒前
18秒前
余木完成签到 ,获得积分10
18秒前
李李李李李完成签到,获得积分10
21秒前
23秒前
sci发布了新的文献求助10
24秒前
HK完成签到 ,获得积分10
24秒前
25秒前
26秒前
annie完成签到,获得积分10
28秒前
stick发布了新的文献求助10
30秒前
30秒前
a623662980发布了新的文献求助10
30秒前
dpk发布了新的文献求助10
31秒前
一天一个苹果儿完成签到 ,获得积分10
32秒前
刘晨瑶发布了新的文献求助10
36秒前
张千鸿完成签到,获得积分10
39秒前
a623662980完成签到,获得积分10
40秒前
好大一个赣宝完成签到,获得积分10
43秒前
44秒前
Peakfeng完成签到,获得积分10
44秒前
hb完成签到,获得积分10
46秒前
顾暖完成签到,获得积分10
47秒前
47秒前
48秒前
dorrrr发布了新的文献求助20
48秒前
ctq关注了科研通微信公众号
49秒前
51秒前
南瓜完成签到,获得积分10
52秒前
53秒前
53秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843754
求助须知:如何正确求助?哪些是违规求助? 3386113
关于积分的说明 10543746
捐赠科研通 3106834
什么是DOI,文献DOI怎么找? 1711181
邀请新用户注册赠送积分活动 823978
科研通“疑难数据库(出版商)”最低求助积分说明 774390