水准点(测量)
城市群
城市化
数据集
计算机科学
地球仪
集合(抽象数据类型)
比例(比率)
软件
遥感
地理
数据科学
数据挖掘
人工智能
地图学
眼科
程序设计语言
经济
经济增长
考古
医学
作者
Xiao Xiang Zhu,Jingliang Hu,Chunping Qiu,Yilei Shi,Jian Kang,Lichao Mou,Hossein Bagheri,Matthias Häberle,Yuansheng Hua,Rong Huang,Lloyd Haydn Hughes,Hao Li,Yao Sun,Guichen Zhang,Shiyao Han,Michael Schmitt,Yuanyuan Wang
标识
DOI:10.1109/mgrs.2020.2964708
摘要
Gaining access to labeled reference data is one of the great challenges in supervised machine-learning endeavors. This is especially true for an automat ed analysis of remote sensing images on a global scale, which enables us to address global challenges, such as urbanization and climate change, using state-of-the-art machine-learning techniques. To meet these pressing needs, especially in urban research, we provide open access to a valuable benchmark data set, So2Sat LCZ42, which consists of local-climate-zone (LCZ) labels of approximately half a million Sentinel-1 and Sentinel-2 image patches in 42 urban agglomerations (plus 10 additional smaller areas) across the globe.
科研通智能强力驱动
Strongly Powered by AbleSci AI