集合卡尔曼滤波器
混乱的
非线性系统
高斯分布
卡尔曼滤波器
颗粒过滤器
计算机科学
概率逻辑
状态空间
算法
数学优化
一般化
维数(图论)
数学
物理
扩展卡尔曼滤波器
人工智能
量子力学
数学分析
统计
纯数学
作者
Alessio Spantini,Ricardo Baptista,Youssef Marzouk
出处
期刊:Siam Review
[Society for Industrial and Applied Mathematics]
日期:2022-11-01
卷期号:64 (4): 921-953
被引量:46
摘要
We consider filtering in high-dimensional non-Gaussian state-space models with intractable transition kernels, nonlinear and possibly chaotic dynamics, and sparse observations in space and time. We propose a novel filtering methodology that harnesses transportation of measures, convex optimization, and ideas from probabilistic graphical models to yield robust ensemble approximations of the filtering distribution in high dimensions. Our approach can be understood as the natural generalization of the ensemble Kalman filter (EnKF) to nonlinear updates, using stochastic or deterministic couplings. The use of nonlinear updates can reduce the intrinsic bias of the EnKF at a marginal increase in computational cost. We avoid any form of importance sampling and introduce non-Gaussian localization approaches for dimension scalability. Our framework achieves state-of-the-art tracking performance on challenging configurations of the Lorenz-96 model in the chaotic regime.
科研通智能强力驱动
Strongly Powered by AbleSci AI