已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

pRNAm-PC: Predicting N6-methyladenosine sites in RNA sequences via physical–chemical properties

核糖核酸 N6-甲基腺苷 化学 生物化学 甲基转移酶 基因 甲基化
作者
Zi Liu,Xuan Xiao,Dong‐Jun Yu,Jianhua Jia,Wang‐Ren Qiu,Kuo‐Chen Chou
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:497: 60-67 被引量:257
标识
DOI:10.1016/j.ab.2015.12.017
摘要

Just like PTM or PTLM (post-translational modification) in proteins, PTCM (post-transcriptional modification) in RNA plays very important roles in biological processes. Occurring at adenine (A) with the genetic code motif (GAC), N(6)-methyldenosine (m(6)A) is one of the most common and abundant PTCMs in RNA found in viruses and most eukaryotes. Given an uncharacterized RNA sequence containing many GAC motifs, which of them can be methylated, and which cannot? It is important for both basic research and drug development to address this problem. Particularly with the avalanche of RNA sequences generated in the postgenomic age, it is highly demanded to develop computational methods for timely identifying the N(6)-methyldenosine sites in RNA. Here we propose a new predictor called pRNAm-PC, in which RNA sequence samples are expressed by a novel mode of pseudo dinucleotide composition (PseDNC) whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross covariance transformations. It was observed via a rigorous jackknife test that, in comparison with the existing predictor for the same purpose, pRNAm-PC achieved remarkably higher success rates in both overall accuracy and stability, indicating that the new predictor will become a useful high-throughput tool for identifying methylation sites in RNA, and that the novel approach can also be used to study many other RNA-related problems and conduct genome analysis. A user-friendly Web server for pRNAm-PC has been established at http://www.jci-bioinfo.cn/pRNAm-PC, by which users can easily get their desired results without needing to go through the mathematical details.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzzc发布了新的文献求助30
1秒前
xyx完成签到,获得积分10
5秒前
火星上以柳完成签到,获得积分10
5秒前
小赵sci完成签到 ,获得积分10
5秒前
Wein完成签到,获得积分10
5秒前
5秒前
czy完成签到 ,获得积分10
8秒前
wildeager应助guozizi采纳,获得10
8秒前
9秒前
小马甲应助AlexanderChen采纳,获得10
9秒前
狗狗完成签到 ,获得积分10
10秒前
鸭梨完成签到 ,获得积分10
11秒前
修辞完成签到 ,获得积分10
11秒前
lyt完成签到,获得积分10
12秒前
所所应助紫翼采纳,获得10
12秒前
干净山彤完成签到 ,获得积分10
13秒前
平常的毛豆应助小宋采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
19秒前
cc完成签到 ,获得积分10
19秒前
Xiaoxiao应助端端采纳,获得10
19秒前
Wein发布了新的文献求助10
20秒前
kouryoufu完成签到,获得积分10
20秒前
21秒前
liu完成签到 ,获得积分10
22秒前
果粒橙完成签到 ,获得积分10
22秒前
傲娇芷蝶完成签到 ,获得积分10
23秒前
乐乐应助guozizi采纳,获得10
23秒前
Jackylee完成签到,获得积分10
24秒前
24秒前
25秒前
熬夜写论文完成签到,获得积分20
26秒前
26秒前
小泡芙发布了新的文献求助10
26秒前
柠木完成签到 ,获得积分10
30秒前
joanna完成签到,获得积分10
32秒前
33秒前
33秒前
34秒前
aaainon完成签到 ,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867814
求助须知:如何正确求助?哪些是违规求助? 3410113
关于积分的说明 10666511
捐赠科研通 3134331
什么是DOI,文献DOI怎么找? 1729028
邀请新用户注册赠送积分活动 833115
科研通“疑难数据库(出版商)”最低求助积分说明 780614