Deciphering and predicting anammox-based nitrogen removal process under oxytetracycline stress via kinetic modeling and machine learning based on big data analysis

厌氧氨氧化菌 化学 土霉素 亚硝酸盐 氮气 环境化学 反硝化 生物化学 硝酸盐 抗生素 反硝化细菌 有机化学
作者
Xinxin Xu,Tingting Du,Du Guo,Xinye Jiang,Ming Zeng,Nan Wu,Chang Wang,Zongpeng Zhang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:796: 148980-148980 被引量:17
标识
DOI:10.1016/j.scitotenv.2021.148980
摘要

Abstract Anaerobic ammonium oxidation (anammox) is an advanced nitrogen removal process that is widely used in the nitrogen removal of various antibiotic containing wastewaters due to its high efficiency and energy saving characteristics. However, as a widely used antibiotic, the inhibitory effect of oxytetracycline (OTC) on anammox is unclear. In this study, the effect of OTC on the anammox-based nitrogen removal process was revealed by kinetic model and machine learning models. Statistical analysis showed that anammox started to be inhibited when the OTC concentration reached 2 mg/L. The inhibition and recovery periods were simulated under OTC stress. During the inhibition period, the R2 fitted by Exp model was higher, and the simulated maximum nitrogen removal rate (NRR) was between 0.47 and 17.05 kg/(m3·d). During the recovery period, both Boltzmann and Gauss models fit well. In addition, the machine learning model of the artificial neural network predicted the NRR more accurately, indicating that the importance of environmental factors was lower than the effluent parameters. Spearman correlation analysis showed that the NRR was negatively correlated with OTC under both short-term and long-term OTC stress. Furthermore, the hydraulic retention time and water quality parameters played an important role in the short-term and long-term experiment, respectively. Finally, redundancy analysis demonstrated that the abundance of nitrogen functional genes, such as hydrazine dehydrogenase, nitrite/nitric oxide oxidoreductase and hydrazine synthase, was negatively correlated with the amount of OTC, while antibiotic resistance genes showed the opposite trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣秋白完成签到,获得积分10
1秒前
2秒前
2秒前
桐桐应助jjj采纳,获得20
2秒前
cyn0762完成签到 ,获得积分10
2秒前
黑苹果完成签到,获得积分10
4秒前
zho关闭了zho文献求助
4秒前
一帆风顺发布了新的文献求助30
5秒前
科研通AI5应助ymx1229采纳,获得30
6秒前
万能图书馆应助整齐红酒采纳,获得10
7秒前
LONG发布了新的文献求助10
8秒前
wangying完成签到,获得积分10
11秒前
LONG完成签到,获得积分10
14秒前
14秒前
amysteryboy发布了新的文献求助10
15秒前
17秒前
整齐红酒发布了新的文献求助10
20秒前
toto完成签到,获得积分10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
zho发布了新的文献求助10
23秒前
cyj完成签到,获得积分10
24秒前
BINGOFAN发布了新的文献求助10
25秒前
25秒前
深情安青应助美好斓采纳,获得10
26秒前
背后归尘完成签到,获得积分10
26秒前
28秒前
打打应助ywhys采纳,获得10
29秒前
细心的思天完成签到,获得积分10
30秒前
曹志毅完成签到 ,获得积分10
31秒前
35秒前
37秒前
40秒前
绿泡泡发布了新的文献求助10
41秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843754
求助须知:如何正确求助?哪些是违规求助? 3386164
关于积分的说明 10543901
捐赠科研通 3106867
什么是DOI,文献DOI怎么找? 1711207
邀请新用户注册赠送积分活动 823978
科研通“疑难数据库(出版商)”最低求助积分说明 774409