SWSR: A Chinese dataset and lexicon for online sexism detection

词典 计算机科学 自然语言处理 人工智能
作者
Aiqi Jiang,Xiaohan Yang,Yang Liu,Arkaitz Zubiaga
出处
期刊:Online Social Networks and Media [Elsevier]
卷期号:27: 100182-100182 被引量:42
标识
DOI:10.1016/j.osnem.2021.100182
摘要

Online sexism has become an increasing concern in social media platforms as it has affected the healthy development of the Internet and can have negative effects in society. While research in the sexism detection domain is growing, most of this research focuses on English as the language and on Twitter as the platform. Our objective here is to broaden the scope of this research by considering the Chinese language on Sina Weibo. We propose the first Chinese sexism dataset – Sina Weibo Sexism Review (SWSR) dataset –, as well as a large Chinese lexicon SexHateLex made of abusive and gender-related terms. We introduce our data collection and annotation process, and provide an exploratory analysis of the dataset characteristics to validate its quality and to show how sexism is manifested in Chinese. The SWSR dataset provides labels at different levels of granularity including (i) sexism or non-sexism, (ii) sexism category and (iii) target type, which can be exploited, among others, for building computational methods to identify and investigate finer-grained gender-related abusive language. We conduct experiments for the three sexism classification tasks making use of state-of-the-art machine learning models. Our results show competitive performance, providing a benchmark for sexism detection in the Chinese language, as well as an error analysis highlighting open challenges needing more research in Chinese NLP. The SWSR dataset and SexHateLex lexicon are publicly available. 1 1 https://doi.org/10.5281/zenodo.4773875 . • The first Chinese sexism dataset with rich features for Chinese sexism detection. • Finer-grained annotated labels of the sexism category and target type. • A large Chinese lexicon built including 3,016 profane and abusive terms. • An analysis to validate dataset quality and show how sexism is evinced in Chinese. • A benchmark for Chinese sexism detection established with preliminary experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥鸣凤完成签到,获得积分10
1秒前
潆星完成签到,获得积分10
1秒前
突突突完成签到,获得积分10
1秒前
体贴师发布了新的文献求助10
1秒前
落寞的寒云完成签到 ,获得积分10
1秒前
ryanliu给ryanliu的求助进行了留言
2秒前
大模型应助于鹏采纳,获得10
2秒前
SciGPT应助馥雅采纳,获得10
2秒前
李健应助邹雄辉采纳,获得10
2秒前
丁仪完成签到,获得积分10
3秒前
fanghaoqi1116完成签到,获得积分20
3秒前
一叶扁舟发布了新的文献求助10
3秒前
Zmy完成签到,获得积分10
3秒前
wefs完成签到,获得积分10
3秒前
3秒前
4秒前
Ava应助wxnice采纳,获得10
4秒前
水水发布了新的文献求助30
4秒前
今后应助弘卿采纳,获得10
4秒前
吃人不眨眼应助whiteside采纳,获得50
5秒前
李瑞发布了新的文献求助10
5秒前
哇卡卡完成签到,获得积分10
6秒前
6秒前
小蘑菇应助大力水手采纳,获得10
6秒前
7秒前
嘎嘎嘎完成签到,获得积分20
7秒前
不言完成签到,获得积分10
7秒前
8秒前
李健的粉丝团团长应助snow采纳,获得10
9秒前
自觉冰海完成签到,获得积分10
9秒前
9秒前
xx_y完成签到 ,获得积分10
9秒前
10秒前
11秒前
沅沅完成签到 ,获得积分10
11秒前
bkagyin应助dryyu采纳,获得10
11秒前
充电宝应助kiwiii采纳,获得10
12秒前
12秒前
窝窝头完成签到 ,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483412
求助须知:如何正确求助?哪些是违规求助? 4584111
关于积分的说明 14394937
捐赠科研通 4513842
什么是DOI,文献DOI怎么找? 2473659
邀请新用户注册赠送积分活动 1459658
关于科研通互助平台的介绍 1433118