Rapid Discrimination of Codonopsis Radix Harvested from Different Regions in China Using an Electronic Nose Coupled with Chemometrics

电子鼻 根(腹足类) 主成分分析 党参 化学计量学 模式识别(心理学) 传统医学 数学 人工智能 中医药 计算机科学 统计 医学 生物 机器学习 植物 替代医学 病理
作者
Fei Yang,Hongxin Lin,Ying-Wen Yang
出处
期刊:Planta Medica [Thieme Medical Publishers (Germany)]
卷期号:79 (10)
标识
DOI:10.1055/s-0033-1348793
摘要

Codonopsis Radix is a well-known and widely used traditional Chinese Medicine (TCM) around the world. It is produced from different regions such as Wen County and Weiyuan County of Gansu Province, China, which are considered as the sources for the best quality. Codonopsis Radix produced from Wen County is called Wen Dang, while the herbal medicine produced from Weiyuan County is called Baitiao Dang. To rapidly and conveniently discriminate between Wen Dang and Baitiao Dang, a rapid and robust method was developed using an electron nose coupled with chemometrics. The odors of samples of Wen Dang and Baitiao Dang were recorded using an electronic nose. Principal component analysis (PCA), discriminant factor analysis (DFA), and soft independent modeling of class analogy (SIMCA) were performed for analyzing the fingerprints of odors from Wen Dang and Baitiao Dang. The results demonstrated that Codonopsis Radix produced from the two locations could be successfully differentiated using an electron nose coupled with PCA, DFA, and SIMCA. The electronic nose requires minimal sample preparation, and it is nondestructive, fast, accurate, and reproducible. Coupled with chemometics, the electronic nose can be potentially of a great practical value in identification and quality control of traditional medicines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ldy发布了新的文献求助10
刚刚
y_hh关注了科研通微信公众号
1秒前
BY完成签到,获得积分10
1秒前
高大觅夏完成签到 ,获得积分10
1秒前
zxcv23完成签到,获得积分10
2秒前
大茜完成签到 ,获得积分10
2秒前
3秒前
lucky发布了新的文献求助10
3秒前
sdl发布了新的文献求助10
3秒前
卷大喵完成签到,获得积分10
4秒前
顾矜应助包子采纳,获得10
4秒前
chuyinweilai发布了新的文献求助10
4秒前
打打应助科研小笨猪采纳,获得10
5秒前
蟹治猿完成签到 ,获得积分10
6秒前
温暖宛筠发布了新的文献求助10
6秒前
Accept_zy应助青岚采纳,获得10
6秒前
6秒前
7秒前
yyang发布了新的文献求助10
9秒前
枯荣完成签到,获得积分10
9秒前
积极傥应助monkey采纳,获得80
9秒前
丹曦完成签到,获得积分10
10秒前
11秒前
楠楠2001发布了新的文献求助10
12秒前
12秒前
NexusExplorer应助提前去一天采纳,获得10
12秒前
暮沐晓光发布了新的文献求助30
12秒前
洪山老狗发布了新的文献求助10
13秒前
了尘完成签到,获得积分10
13秒前
14秒前
小冰发布了新的文献求助10
14秒前
yzkyg完成签到,获得积分20
16秒前
16秒前
研友_knggYn完成签到,获得积分0
16秒前
17秒前
huangbing123完成签到 ,获得积分10
17秒前
整齐红酒发布了新的文献求助30
17秒前
冰魂应助BY采纳,获得10
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838855
求助须知:如何正确求助?哪些是违规求助? 3381275
关于积分的说明 10517605
捐赠科研通 3100746
什么是DOI,文献DOI怎么找? 1707746
邀请新用户注册赠送积分活动 821892
科研通“疑难数据库(出版商)”最低求助积分说明 773033