计算机科学
马尔科夫蒙特卡洛
吉布斯抽样
蒙特卡罗方法
推论
软件
理论计算机科学
概率逻辑
马尔可夫链
计算科学
数据挖掘
算法
程序设计语言
贝叶斯概率
机器学习
人工智能
数学
统计
作者
Wouter Boomsma,Jes Frellsen,Tim Harder,Sandro Bottaro,Kristoffer E. Johansson,Pengfei Tian,Kasper Stovgaard,Christian Andreetta,Simon Olsson,Jan Brink Valentin,Lubomir D. Antonov,Anders S. Christensen,Mikael Borg,Jan H. Jensen,Kresten Lindorff‐Larsen,Jesper Ferkinghoff‐Borg,Thomas Hamelryck
摘要
We present a new software framework for Markov chain Monte Carlo sampling for simulation, prediction, and inference of protein structure. The software package contains implementations of recent advances in Monte Carlo methodology, such as efficient local updates and sampling from probabilistic models of local protein structure. These models form a probabilistic alternative to the widely used fragment and rotamer libraries. Combined with an easily extendible software architecture, this makes PHAISTOS well suited for Bayesian inference of protein structure from sequence and/or experimental data. Currently, two force‐fields are available within the framework: PROFASI and OPLS‐AA/L, the latter including the generalized Born surface area solvent model. A flexible command‐line and configuration‐file interface allows users quickly to set up simulations with the desired configuration. PHAISTOS is released under the GNU General Public License v3.0. Source code and documentation are freely available from http://phaistos.sourceforge.net . The software is implemented in C++ and has been tested on Linux and OSX platforms. © 2013 Wiley Periodicals, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI