Predicting EGFR Mutation Status in Non–Small Cell Lung Cancer Using Artificial Intelligence: A Systematic Review and Meta-Analysis

荟萃分析 医学 肺癌 肿瘤科 突变 内科学 计算生物学 生物 遗传学 基因
作者
Hung Song Nguyen,Dang Khanh Ngan Ho,Nam Nhat Nguyen,Huy Tran,Ka‐Wai Tam,Nguyen Quoc Khanh Le
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 660-683 被引量:43
标识
DOI:10.1016/j.acra.2023.03.040
摘要

Rationale and Objectives Recent advancements in artificial intelligence (AI) render a substantial promise for epidermal growth factor receptor (EGFR) mutation status prediction in non–small cell lung cancer (NSCLC). We aimed to evaluate the performance and quality of AI algorithms that use radiomics features in predicting EGFR mutation status in patient with NSCLC. Materials and Methods We searched PubMed (Medline), EMBASE, Web of Science, and IEEExplore for studies published up to February 28, 2022. Studies utilizing an AI algorithm (either conventional machine learning [cML] and deep learning [DL]) for predicting EGFR mutations in patients with NSLCL were included. We extracted binary diagnostic accuracy data and constructed a bivariate random-effects model to obtain pooled sensitivity, specificity, and 95% confidence interval. This study is registered with PROSPERO, CRD42021278738. Results Our search identified 460 studies, of which 42 were included. Thirty-five studies were included in the meta-analysis. The AI algorithms exhibited an overall area under the curve (AUC) value of 0.789 and pooled sensitivity and specificity levels of 72.2% and 73.3%, respectively. The DL algorithms outperformed cML in terms of AUC (0.822 vs. 0.775) and sensitivity (80.1% vs. 71.1%), but had lower specificity (70.0% vs. 73.8%, p-value < 0.001) compared to cML. Subgroup analysis revealed that the use of positron-emission tomography/computed tomography, additional clinical information, deep feature extraction, and manual segmentation can improve diagnostic performance. Conclusion DL algorithms can serve as a novel method for increasing predictive accuracy and thus have considerable potential for use in predicting EGFR mutation status in patient with NSCLC. We also suggest that guidelines on using AI algorithms in medical image analysis should be developed with a focus on oncologic radiomics. Recent advancements in artificial intelligence (AI) render a substantial promise for epidermal growth factor receptor (EGFR) mutation status prediction in non–small cell lung cancer (NSCLC). We aimed to evaluate the performance and quality of AI algorithms that use radiomics features in predicting EGFR mutation status in patient with NSCLC. We searched PubMed (Medline), EMBASE, Web of Science, and IEEExplore for studies published up to February 28, 2022. Studies utilizing an AI algorithm (either conventional machine learning [cML] and deep learning [DL]) for predicting EGFR mutations in patients with NSLCL were included. We extracted binary diagnostic accuracy data and constructed a bivariate random-effects model to obtain pooled sensitivity, specificity, and 95% confidence interval. This study is registered with PROSPERO, CRD42021278738. Our search identified 460 studies, of which 42 were included. Thirty-five studies were included in the meta-analysis. The AI algorithms exhibited an overall area under the curve (AUC) value of 0.789 and pooled sensitivity and specificity levels of 72.2% and 73.3%, respectively. The DL algorithms outperformed cML in terms of AUC (0.822 vs. 0.775) and sensitivity (80.1% vs. 71.1%), but had lower specificity (70.0% vs. 73.8%, p-value < 0.001) compared to cML. Subgroup analysis revealed that the use of positron-emission tomography/computed tomography, additional clinical information, deep feature extraction, and manual segmentation can improve diagnostic performance. DL algorithms can serve as a novel method for increasing predictive accuracy and thus have considerable potential for use in predicting EGFR mutation status in patient with NSCLC. We also suggest that guidelines on using AI algorithms in medical image analysis should be developed with a focus on oncologic radiomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
贤惠的白开水完成签到 ,获得积分10
4秒前
4秒前
桐桐应助xiaojiesi采纳,获得10
4秒前
山语发布了新的文献求助10
5秒前
kaifeiQi完成签到,获得积分10
5秒前
6秒前
n3pu030036应助不知道采纳,获得10
6秒前
TIGun发布了新的文献求助10
7秒前
赘婿应助kytmm2022采纳,获得30
8秒前
9秒前
Ace_killer发布了新的文献求助10
10秒前
10秒前
偷乐发布了新的文献求助30
11秒前
科研通AI5应助sunshine采纳,获得10
11秒前
12秒前
13秒前
简单平蓝发布了新的文献求助10
14秒前
14秒前
14秒前
郁金香发布了新的文献求助10
15秒前
unique完成签到,获得积分10
16秒前
包佳梁发布了新的文献求助10
18秒前
18秒前
unique发布了新的文献求助10
19秒前
Co发布了新的文献求助10
19秒前
hulala发布了新的文献求助10
19秒前
郁金香完成签到,获得积分10
21秒前
荣耀发布了新的文献求助10
22秒前
23秒前
Rico发布了新的文献求助10
23秒前
master_jia完成签到,获得积分10
24秒前
WDK完成签到,获得积分10
25秒前
隐形曼青应助sxp1031采纳,获得10
28秒前
美满的小蘑菇完成签到 ,获得积分10
28秒前
28秒前
lxw完成签到 ,获得积分10
30秒前
Yiyyan完成签到,获得积分10
31秒前
Co完成签到 ,获得积分10
32秒前
冰魂应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778324
求助须知:如何正确求助?哪些是违规求助? 3323927
关于积分的说明 10216572
捐赠科研通 3039206
什么是DOI,文献DOI怎么找? 1667877
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385