Predicting EGFR Mutation Status in Non–Small Cell Lung Cancer Using Artificial Intelligence: A Systematic Review and Meta-Analysis

荟萃分析 医学 肺癌 肿瘤科 突变 内科学 计算生物学 生物 遗传学 基因
作者
Hung Song Nguyen,Dang Khanh Ngan Ho,Nam Nhat Nguyen,Huy Tran,Ka‐Wai Tam,Nguyen Quoc Khanh Le
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 660-683 被引量:64
标识
DOI:10.1016/j.acra.2023.03.040
摘要

Rationale and Objectives Recent advancements in artificial intelligence (AI) render a substantial promise for epidermal growth factor receptor (EGFR) mutation status prediction in non–small cell lung cancer (NSCLC). We aimed to evaluate the performance and quality of AI algorithms that use radiomics features in predicting EGFR mutation status in patient with NSCLC. Materials and Methods We searched PubMed (Medline), EMBASE, Web of Science, and IEEExplore for studies published up to February 28, 2022. Studies utilizing an AI algorithm (either conventional machine learning [cML] and deep learning [DL]) for predicting EGFR mutations in patients with NSLCL were included. We extracted binary diagnostic accuracy data and constructed a bivariate random-effects model to obtain pooled sensitivity, specificity, and 95% confidence interval. This study is registered with PROSPERO, CRD42021278738. Results Our search identified 460 studies, of which 42 were included. Thirty-five studies were included in the meta-analysis. The AI algorithms exhibited an overall area under the curve (AUC) value of 0.789 and pooled sensitivity and specificity levels of 72.2% and 73.3%, respectively. The DL algorithms outperformed cML in terms of AUC (0.822 vs. 0.775) and sensitivity (80.1% vs. 71.1%), but had lower specificity (70.0% vs. 73.8%, p-value < 0.001) compared to cML. Subgroup analysis revealed that the use of positron-emission tomography/computed tomography, additional clinical information, deep feature extraction, and manual segmentation can improve diagnostic performance. Conclusion DL algorithms can serve as a novel method for increasing predictive accuracy and thus have considerable potential for use in predicting EGFR mutation status in patient with NSCLC. We also suggest that guidelines on using AI algorithms in medical image analysis should be developed with a focus on oncologic radiomics. Recent advancements in artificial intelligence (AI) render a substantial promise for epidermal growth factor receptor (EGFR) mutation status prediction in non–small cell lung cancer (NSCLC). We aimed to evaluate the performance and quality of AI algorithms that use radiomics features in predicting EGFR mutation status in patient with NSCLC. We searched PubMed (Medline), EMBASE, Web of Science, and IEEExplore for studies published up to February 28, 2022. Studies utilizing an AI algorithm (either conventional machine learning [cML] and deep learning [DL]) for predicting EGFR mutations in patients with NSLCL were included. We extracted binary diagnostic accuracy data and constructed a bivariate random-effects model to obtain pooled sensitivity, specificity, and 95% confidence interval. This study is registered with PROSPERO, CRD42021278738. Our search identified 460 studies, of which 42 were included. Thirty-five studies were included in the meta-analysis. The AI algorithms exhibited an overall area under the curve (AUC) value of 0.789 and pooled sensitivity and specificity levels of 72.2% and 73.3%, respectively. The DL algorithms outperformed cML in terms of AUC (0.822 vs. 0.775) and sensitivity (80.1% vs. 71.1%), but had lower specificity (70.0% vs. 73.8%, p-value < 0.001) compared to cML. Subgroup analysis revealed that the use of positron-emission tomography/computed tomography, additional clinical information, deep feature extraction, and manual segmentation can improve diagnostic performance. DL algorithms can serve as a novel method for increasing predictive accuracy and thus have considerable potential for use in predicting EGFR mutation status in patient with NSCLC. We also suggest that guidelines on using AI algorithms in medical image analysis should be developed with a focus on oncologic radiomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助热舞特采纳,获得10
1秒前
干净冷之发布了新的文献求助10
1秒前
轻松峻熙完成签到,获得积分10
1秒前
chihirovvvv完成签到,获得积分10
2秒前
辛苦了华子应助机灵以蕊采纳,获得20
2秒前
乐乐应助李四采纳,获得10
2秒前
Tmh完成签到,获得积分10
3秒前
3秒前
太叔白风完成签到,获得积分10
3秒前
4秒前
Leety完成签到,获得积分10
4秒前
灵巧的翠风完成签到,获得积分10
4秒前
冬虫夏草完成签到,获得积分10
4秒前
奥雷里亚诺完成签到 ,获得积分10
4秒前
天天快乐应助dovedd采纳,获得20
6秒前
诸葛钢铁完成签到,获得积分10
6秒前
天真小甜瓜完成签到,获得积分10
7秒前
7秒前
HJQin完成签到,获得积分20
7秒前
Owllight发布了新的文献求助10
7秒前
墨尘发布了新的文献求助200
8秒前
Michael完成签到,获得积分10
8秒前
气球好饿完成签到,获得积分10
9秒前
yuanvv完成签到,获得积分20
9秒前
烟花应助memedaaaah采纳,获得10
10秒前
田様应助负责的妙松采纳,获得10
11秒前
晁子枫发布了新的文献求助10
11秒前
11秒前
ASUKA完成签到,获得积分10
11秒前
烟花应助Galaxy采纳,获得10
11秒前
lululu发布了新的文献求助10
12秒前
嗑学家完成签到,获得积分10
12秒前
优雅的老姆完成签到,获得积分10
12秒前
无忧完成签到,获得积分10
13秒前
Ava应助yuanvv采纳,获得10
13秒前
Amber完成签到,获得积分10
14秒前
科目三应助lhk采纳,获得10
14秒前
房LY完成签到,获得积分10
15秒前
Inanopig完成签到,获得积分10
15秒前
研友_VZG7GZ应助火星上誉采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934751
求助须知:如何正确求助?哪些是违规求助? 3480183
关于积分的说明 11007954
捐赠科研通 3210148
什么是DOI,文献DOI怎么找? 1774043
邀请新用户注册赠送积分活动 860670
科研通“疑难数据库(出版商)”最低求助积分说明 797869