CASMatching strategy for automated detection and quantification of carotid artery stenosis based on digital subtraction angiography

狭窄 数字减影血管造影 颈动脉 放射科 减法 血管造影 医学 计算机科学 计算机视觉 心脏病学 数学 算术
作者
Aziguli Wulamu,Jichang Luo,Saian Chen,Han Zheng,Tao Wang,Renjie Yang,Liqun Jiao,Taohong Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:243: 107871-107871 被引量:1
标识
DOI:10.1016/j.cmpb.2023.107871
摘要

Automated detection and quantification of carotid artery stenosis is a crucial task in establishing a computer-aided diagnostic system for brain diseases. Digital subtraction angiography (DSA) is known as the "gold standard" for carotid stenosis diagnosis. It is commonly used to identify carotid artery stenosis and measure morphological indices of the stenosis. However, using deep learning to detect stenosis based on DSA images and further quantitatively predicting the morphological indices remain a challenge due the absence of prior work. In this paper, we propose a quantitative method for predicting morphological indices of carotid stenosis. Our method adopts a two-stage pipeline, first locating regions suitable for predicting morphological indices by object detection model, and then using a regression model to predict indices. A novel Carotid Artery Stenosis Matching (CASMatching) strategy is introduced into the object detection to model the matching relationship between a stenosis and multiple normal vessel segments. The proposed Match-ness branch predicts a Match-ness score for each normal vessel segment to indicate the degree of matching to the stenosis. A novel Direction Distance-IoU (2DIoU) loss based on the Distance-IoU loss is proposed to make the model focused more on the bounding box regression in the direction of vessel extension. After detection, the normal vessel segment with the highest Match-ness score and the stenosis are intercepted from the original image, then fed into a regression model to predict morphological indices and calculate the degree of stenosis. Our method is trained and evaluated on a dataset collected from three different manufacturers' monoplane X-ray systems. The results show that the proposed components in the object detector substantially improve the detection performance of normal vascular segments. For the prediction of morphological indices, our model achieves Mean Absolute Error of 0.378, 0.221, 4.9 on reference vessel diameter (RVD), minimum lumen diameter (MLD) and stenosis degree. Our method can precisely localize the carotid stenosis and the normal vessel segment suitable for predicting RVD of the stenosis, and further achieve accurate quantification, providing a novel solution for the quantification of carotid artery stenosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助asdadadad采纳,获得10
1秒前
剑来发布了新的文献求助10
4秒前
5秒前
7秒前
8秒前
9秒前
勤恳的雪卉完成签到,获得积分0
10秒前
11秒前
田様应助游手浩闲采纳,获得10
11秒前
iros发布了新的文献求助10
12秒前
12秒前
asdadadad发布了新的文献求助10
12秒前
九九发布了新的文献求助10
12秒前
我是老大应助积极的睫毛采纳,获得10
13秒前
汉堡包应助可乐不珍珍采纳,获得10
14秒前
剑来完成签到,获得积分20
14秒前
领导范儿应助YY采纳,获得10
14秒前
不灭完成签到,获得积分10
14秒前
碳水大王发布了新的文献求助10
16秒前
小许同学发布了新的文献求助10
17秒前
楊子完成签到,获得积分10
18秒前
18秒前
20秒前
XX完成签到,获得积分10
22秒前
游手浩闲发布了新的文献求助10
22秒前
楊子发布了新的文献求助20
26秒前
Yisa完成签到,获得积分10
29秒前
科研通AI5应助Harry采纳,获得10
29秒前
科目三应助长生采纳,获得10
29秒前
30秒前
飘逸的烧鹅完成签到 ,获得积分10
35秒前
35秒前
36秒前
在水一方应助星野爱采纳,获得10
37秒前
38秒前
39秒前
40秒前
冰魂应助仙妮宝贝采纳,获得10
41秒前
meadline发布了新的文献求助10
41秒前
lianhua发布了新的文献求助10
42秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
How We Sold Our Future: The Failure to Fight Climate Change 200
Lab Dog: What Global Science Owes American Beagles 200
Governing Marine Living Resources in the Polar Regions 200
Bazaar to piazza. Islamic trade and Italian art, 1300–1600 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824484
求助须知:如何正确求助?哪些是违规求助? 3366814
关于积分的说明 10442670
捐赠科研通 3086123
什么是DOI,文献DOI怎么找? 1697727
邀请新用户注册赠送积分活动 816458
科研通“疑难数据库(出版商)”最低求助积分说明 769707