Knowledge distillation-driven semi-supervised multi-view classification

判别式 计算机科学 人工智能 机器学习 蒸馏 提取器 班级(哲学) 模式识别(心理学) 化学 有机化学 工艺工程 工程类
作者
Xiaoli Wang,Yongli Wang,Guanzhou Ke,Yupeng Wang,Xiaobin Hong
出处
期刊:Information Fusion [Elsevier]
卷期号:103: 102098-102098 被引量:22
标识
DOI:10.1016/j.inffus.2023.102098
摘要

Semi-supervised multi-view classification is a critical research topic that leverages the discrepancy between different views and limited annotated samples for pattern recognition in computer vision. However, it encounters a significant challenge: obtaining comprehensive discriminative representations with a scarcity of labeled samples. Although existing methods aim to learn discriminative features by fusing multi-view information, a significant challenge persists due to the difficulty of transferring complementary information and fusing multiple views with limited supervised information. In response to this challenge, this work introduces an innovative algorithm that integrates Self-Knowledge Distillation (Self-KD) to facilitate semi-supervised multi-view classification. Initially, we employ a view-specific feature extractor for each view to learn discriminative representations. Subsequently, we introduce a self-distillation module to drive information interaction across multiple views, enabling mutual learning and refinement of multi-view unified and specific representations. Moreover, we introduce a class-aware contrastive module to alleviate confirmation bias stemming from noise in the generated pseudo-labels during knowledge distillation. To the best of our knowledge, this is the first attempt to extend Self-KD to address semi-supervised multi-view classification problems. Extensive experimental results validate the efficiency of this approach in semi-supervised multi-view classification compared to existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一手灵魂完成签到,获得积分10
1秒前
酷波er应助活泼的萝卜采纳,获得10
1秒前
顾矜应助呼初南采纳,获得10
1秒前
可爱的函函应助发发采纳,获得10
3秒前
小熊完成签到,获得积分10
4秒前
5秒前
SciGPT应助迷路的钻石采纳,获得10
6秒前
8秒前
8秒前
阳光香水发布了新的文献求助10
10秒前
阳佟半仙完成签到,获得积分10
12秒前
浮游应助兮兮大王采纳,获得10
13秒前
baiye发布了新的文献求助30
13秒前
pxy发布了新的文献求助10
13秒前
14秒前
dd完成签到,获得积分10
17秒前
浮游应助endlessloop采纳,获得10
17秒前
17秒前
lidm完成签到,获得积分10
18秒前
18秒前
浮游应助阳光香水采纳,获得10
19秒前
kkk完成签到,获得积分10
20秒前
喵喵发布了新的文献求助10
22秒前
小蘑菇应助aurorazhao采纳,获得10
25秒前
25秒前
书蔬鱼猪完成签到,获得积分10
30秒前
alc完成签到,获得积分10
32秒前
34秒前
zz完成签到,获得积分10
34秒前
乐观乐枫完成签到 ,获得积分10
34秒前
39秒前
39秒前
41秒前
42秒前
pxy发布了新的文献求助10
42秒前
星辰发布了新的文献求助30
44秒前
baiye发布了新的文献求助30
44秒前
浮游应助hbhbj采纳,获得10
45秒前
45秒前
bnvgx完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306416
求助须知:如何正确求助?哪些是违规求助? 4452285
关于积分的说明 13854176
捐赠科研通 4339713
什么是DOI,文献DOI怎么找? 2382823
邀请新用户注册赠送积分活动 1377697
关于科研通互助平台的介绍 1345355