Masked Image Modeling: A Survey

人工智能 计算机科学 模式识别(心理学) 图像(数学) 图像处理 计算机视觉
作者
Vlad Hondru,Florinel Alin Croitoru,Shervin Minaee,Radu Tudor Ionescu,Nicu Sebe
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:133 (10): 7154-7200 被引量:5
标识
DOI:10.1007/s11263-025-02524-1
摘要

Abstract In this work, we survey recent studies on masked image modeling (MIM), an approach that emerged as a powerful self-supervised learning technique in computer vision. The MIM task involves masking some information, e.g. pixels, patches, or even latent representations, and training a model, usually an autoencoder, to predicting the missing information by using the context available in the visible part of the input. We identify and formalize two categories of approaches on how to implement MIM as a pretext task, one based on reconstruction and one based on contrastive learning. Then, we construct a taxonomy and review the most prominent papers in recent years. We complement the manually constructed taxonomy with a dendrogram obtained by applying a hierarchical clustering algorithm. We further identify relevant clusters via manually inspecting the resulting dendrogram. Our review also includes datasets that are commonly used in MIM research. We aggregate the performance results of various masked image modeling methods on the most popular datasets, to facilitate the comparison of competing methods. Finally, we identify research gaps and propose several interesting directions of future work. We supplement our survey with the following public repository containing organized references: https://github.com/vladhondru25/MIM-Survey .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助咕噜_任采纳,获得10
刚刚
FlaKe完成签到,获得积分10
2秒前
clamon完成签到,获得积分10
2秒前
lll完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
Zx_1993应助学霸宇大王采纳,获得20
4秒前
5秒前
5秒前
6秒前
7秒前
跳跃乘风发布了新的文献求助10
7秒前
星辰大海应助zzy采纳,获得10
7秒前
正直千兰完成签到,获得积分10
7秒前
berg发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
慕青应助负责的问雁采纳,获得10
8秒前
9秒前
桐桐应助孤独尔安采纳,获得10
9秒前
9秒前
正直千兰发布了新的文献求助10
10秒前
的y应助yu采纳,获得10
10秒前
Nov发布了新的文献求助10
11秒前
11秒前
爆米花应助Wbbb采纳,获得10
11秒前
科研通AI6应助paopao采纳,获得30
11秒前
dakjdia发布了新的文献求助10
11秒前
111发布了新的文献求助10
13秒前
羊羊羊发布了新的文献求助30
14秒前
WendyWen完成签到,获得积分10
15秒前
长乐完成签到,获得积分10
15秒前
HMO_eee完成签到,获得积分10
15秒前
18秒前
19秒前
微笑凡柔发布了新的文献求助10
20秒前
20秒前
桐桐应助Nov采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547761
求助须知:如何正确求助?哪些是违规求助? 4633216
关于积分的说明 14629838
捐赠科研通 4574723
什么是DOI,文献DOI怎么找? 2508550
邀请新用户注册赠送积分活动 1484961
关于科研通互助平台的介绍 1456029