Spiral Electrodes‐Enhanced Triboelectrification‐Induced Electroluminescence in Nanocellulose Composites for Self‐Powered Visualized Acoustic Sensing

材料科学 纳米纤维素 复合材料 电致发光 摩擦电效应 螺旋(铁路) 电极 纤维素 机械工程 化学 物理化学 图层(电子) 化学工程 工程类
作者
Chen Wang,Jiacheng Liu,Zhen Tian,Ming Sun,Chang Ding,Cuicui Zhuang,Li Su
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.70504
摘要

ABSTRACT Triboelectrification‐induced electroluminescence (TIEL) as an emerging motion‐activated luminescence has garnered substantial interest for its potential in visualized sensing applications. However, the current practice of TIEL predominantly relies on non‐degradable synthetic polymers that severely limit their sustainability. Herein, a nanocellulose‐based TIEL composite is first developed by incorporating ZnS:Cu into a chitosan/bacterial cellulose matrix, which exhibits remarkable multifunctional features including high‐brightness (28 μW cm −2 ), ultra‐low density (0.6 g cm −3 ), environmental resilience (100°C; 70% RH), controlled biodegradability, and exceptional mechanical flexibility. Leveraging this material, a modular self‐powered visualized acoustic sensor (SP‐VAS) is designed through the integration of complementary Archimedean spiral electrodes, which can convert acoustic waves into TIEL signals without any external power supply. The optimized fringe field from the electrodes enhances acoustic‐to‐TIEL conversion efficiency, yielding a sevenfold increase in TIEL intensity. The resultant SP‐VAS is demonstrated as applicable for sound recognition and interaction. With the use of deep‐learning algorithms, five different instrument sounds were recognized with an accuracy of up to 99.36%. Furthermore, the voice‐TIEL activation of desk lamp control was achieved by combining the SP‐VAS with a microcontroller unit (MCU)‐assisted operation. This work establishes a novel strategy for developing environmentally friendly and high‐performance TIEL materials while advancing acoustic‐optic transduction technology, which shows transformative potential for applications in next‐generation intelligent robotics, smart homes, and autonomous vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haha发布了新的文献求助10
1秒前
善学以致用应助小龙采纳,获得10
1秒前
慕迎蕾完成签到,获得积分10
1秒前
Owen应助风起人散采纳,获得10
1秒前
2秒前
liangzhang02完成签到,获得积分10
2秒前
3秒前
慕迎蕾发布了新的文献求助10
5秒前
5秒前
5秒前
桐桐应助认真学习采纳,获得10
6秒前
7秒前
mingjie完成签到,获得积分10
7秒前
小巴德发布了新的文献求助10
8秒前
8秒前
zuanyhou发布了新的文献求助10
8秒前
小杭76发布了新的文献求助10
10秒前
马骥发布了新的文献求助10
10秒前
科研通AI5应助1111采纳,获得20
11秒前
wop111应助虞无声采纳,获得10
12秒前
xly完成签到,获得积分10
12秒前
风起人散发布了新的文献求助10
13秒前
彭于晏应助fzy采纳,获得10
13秒前
13秒前
闪闪新梅完成签到,获得积分10
13秒前
13秒前
读行千万发布了新的文献求助10
15秒前
17秒前
lulu发布了新的文献求助30
17秒前
ovoclive发布了新的文献求助10
17秒前
Ykn发布了新的文献求助10
18秒前
关心发布了新的文献求助10
19秒前
Aten发布了新的文献求助10
20秒前
21秒前
弱水应助菲硕采纳,获得10
22秒前
ding应助依依采纳,获得10
23秒前
wyz发布了新的文献求助30
24秒前
24秒前
默默千亦完成签到 ,获得积分10
24秒前
whisper完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4818689
求助须知:如何正确求助?哪些是违规求助? 4128066
关于积分的说明 12775382
捐赠科研通 3867477
什么是DOI,文献DOI怎么找? 2128193
邀请新用户注册赠送积分活动 1149060
关于科研通互助平台的介绍 1044618