In-Depth Analysis of Molecular Network Based on Liquid Chromatography Coupled with Tandem Mass Spectrometry in Natural Products: Importance of Redundant Nodes Discovery

化学 串联质谱法 串联 质谱法 色谱法 液相色谱-质谱法 航空航天工程 工程类
作者
Yuhao Zhang,Jingyu Liao,Wanqi Le,Weidong Zhang,Gaosong Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:16
标识
DOI:10.1021/acs.analchem.4c02230
摘要

The identification of molecules within complex mixtures is a major bottleneck in natural products (NPs) research. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as the main tool for the high-throughput characterization of NPs. The large amount of data sets by LC-MS/MS presents a challenge for data processing and interpretation, and the LC-MS/MS molecular network (MN) is one of the most prominent tools for analyzing large MS/MS data sets, widely used for rapid classification, identification, and structural speculation of unknown compounds. However, the existence of a large number of redundant nodes leads to false-positive results. To solve this problem, we proposed the in-depth analysis of MN. In this study, in-depth analysis of MN of five NPs representing the common structures of saponin, steroid, flavonoid, alkaloid, and phenolic acid revealed the presence of redundant nodes (including other adducts, isotope, and in-source fragmentation) in addition to the normal nodes, which can lead to false-positive identification results. Additionally, the reasons for different redundant nodes are discussed and experimentally verified, and it was found that the impact of redundant nodes can be mitigated by optimizing the experimental conditions and employing Feature-Based Molecular Networking. Furthermore, Ion Identity Molecular Networking can rapidly discover and screen redundant nodes, simplifying the in-depth analysis of MN and improving the network connectivity of structurally related molecules. Finally, a combination formulation of 7 NPs is used as an example to provide a guide for in-depth analysis of MN for comprehensive characterization of complex systems. This study highlights the importance of an in-depth analysis of MN for better understanding and utilization of MS/MS data in complex systems to reduce the false-positive rate of identification by screening and filtering redundant nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦克尔完成签到,获得积分10
刚刚
顾瑞关注了科研通微信公众号
刚刚
搜集达人应助pkaq采纳,获得10
1秒前
科研通AI6应助YUYUYU采纳,获得10
2秒前
轻轻的吻完成签到 ,获得积分10
3秒前
123发布了新的文献求助10
3秒前
FashionBoy应助权_888采纳,获得10
3秒前
冷傲的如柏完成签到,获得积分10
5秒前
故意的鼠标完成签到,获得积分10
6秒前
传奇3应助常姗采纳,获得10
6秒前
粗犷的世平完成签到,获得积分10
6秒前
7秒前
7秒前
CodeCraft应助2123121321321采纳,获得10
8秒前
紫苏桃子姜完成签到,获得积分10
8秒前
李爱国应助lyz采纳,获得10
9秒前
azen完成签到,获得积分20
9秒前
完美世界应助HY采纳,获得10
10秒前
钟小熊完成签到,获得积分10
10秒前
10秒前
搜集达人应助秀莉采纳,获得10
10秒前
香蕉觅云应助威武的听露采纳,获得10
10秒前
RR完成签到,获得积分10
11秒前
风中海秋完成签到,获得积分10
12秒前
卢建烨完成签到,获得积分10
12秒前
小马甲应助遇见馅儿饼采纳,获得10
12秒前
池台下完成签到,获得积分10
12秒前
12秒前
clp发布了新的文献求助10
13秒前
13秒前
13秒前
忧郁的鲜花完成签到,获得积分10
13秒前
王大爷完成签到,获得积分10
13秒前
Hello应助满天星辰采纳,获得30
13秒前
HXY发布了新的文献求助10
14秒前
YvonneL完成签到,获得积分20
14秒前
领导范儿应助Allen采纳,获得10
14秒前
16秒前
王大爷发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954783
求助须知:如何正确求助?哪些是违规求助? 4217083
关于积分的说明 13122349
捐赠科研通 3999304
什么是DOI,文献DOI怎么找? 2188752
邀请新用户注册赠送积分活动 1203861
关于科研通互助平台的介绍 1116143