Yolov5 polyp detection algorithm based on multi-branch convolution RFB module

计算机科学 卷积(计算机科学) 算法 人工智能 人工神经网络
作者
Jianfeng Guo,Xiyao Dong
标识
DOI:10.1117/12.3033480
摘要

Colorectal cancer remains a formidable global health concern, underscoring the pivotal role of timely detection and intervention in addressing colorectal polyps. This paper unveils the "YOLOv5 Optimized Polyp Detection Algorithm Based on the Multi-Branch RFB Module," offering innovative solutions to overcome existing challenges in manual interpretation and resource disparities. Key Innovations: Our approach introduces a groundbreaking adaptive Gamma transformation in image preprocessing, enhancing contrast and significantly elevating the algorithm's ability to identify colorectal polyps. This transformation contributes to a remarkable improvement in detection accuracy. Furthermore, the integration of the Multi-Branch RFB Convolution Module into the YOLOv5 model is a pioneering addition. This module strategically considers the interplay between receptive field size and eccentricity, resulting in a substantial increase in discriminative power and, consequently, a notable enhancement in detection accuracy. Method Flow Overview: Our algorithm modifies the YOLOv5 framework by incorporating three RBF multi-branch convolutional modules, strategically enhancing feature extraction at deep layers for precise and rapid object detection. Results and Discussion: Comprehensive evaluations on diverse datasets, including CVC-ColonDB and Kvasir-seg, underscore the algorithm's superior performance. Precision, Recall, F1-Score, and mAP@0.5 scores on CVC-ColonDB outperform alternative methods, affirming the effectiveness of our proposed algorithm. Conclusion: This study pioneers advancements in computer-aided colorectal polyp detection, seamlessly integrating adaptive image preprocessing and the multi-branch RFB module. The algorithm demonstrates heightened accuracy, efficiency, and adaptability across datasets, with real-time capabilities and an expanded receptive field contributing to improved diagnostic accuracy. Our findings suggest a promising solution for enhancing early colorectal cancer diagnosis, streamlining clinical workflows, and ushering in a new era of precision in medical imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖元柏发布了新的文献求助10
1秒前
songjin111111完成签到,获得积分10
1秒前
冰魂应助吴天姿采纳,获得10
1秒前
威武巧曼发布了新的文献求助10
1秒前
G浅浅发布了新的文献求助10
1秒前
隐形曼青应助mayberichard采纳,获得10
2秒前
梅花K发布了新的文献求助10
2秒前
2秒前
2秒前
leslieo3o发布了新的文献求助10
3秒前
xhs12138发布了新的文献求助10
3秒前
瞿寒完成签到,获得积分10
3秒前
4秒前
贝果帮发布了新的文献求助10
4秒前
史迪仔完成签到,获得积分10
4秒前
Ava应助腌黄瓜女士采纳,获得10
4秒前
zzz发布了新的文献求助10
4秒前
zwip_xes发布了新的文献求助10
5秒前
无心的鬼神完成签到,获得积分10
5秒前
5秒前
5秒前
Elfmast完成签到,获得积分10
5秒前
5秒前
东华帝君完成签到,获得积分10
5秒前
5秒前
sllytn完成签到,获得积分10
6秒前
皮皮发布了新的文献求助10
6秒前
7秒前
结实的蘑菇完成签到 ,获得积分10
7秒前
yanchen完成签到,获得积分10
7秒前
qqqxl完成签到,获得积分10
7秒前
8秒前
绝望核弹发布了新的文献求助10
8秒前
jiang完成签到,获得积分20
9秒前
WLM发布了新的文献求助10
9秒前
安安安呐发布了新的文献求助10
9秒前
10秒前
Vyasa发布了新的文献求助10
10秒前
Angsent完成签到,获得积分10
10秒前
落后以旋完成签到,获得积分10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837986
求助须知:如何正确求助?哪些是违规求助? 3380201
关于积分的说明 10512925
捐赠科研通 3099817
什么是DOI,文献DOI怎么找? 1707224
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772717