Long Dialogue Emotion Detection Based on Commonsense Knowledge Graph Guidance

计算机科学 常识 话语 对话 自然语言处理 人工智能 图形 潜在语义分析 共指 领域知识 语言学 理论计算机科学 哲学 分辨率(逻辑)
作者
Weizhi Nie,Yongping Bao,Yue Zhao,An-An Liu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:31
标识
DOI:10.1109/tmm.2023.3267295
摘要

Dialogue emotion detection is always challenging due to human subjectivity and the randomness of dialogue content. In a conversation, the emotion of each person often develops via a cumulative process, which can be influenced by many elements of uncertainty. Much commonsense knowledge influences people's emotions imperceptibly, such as experiential or habitual knowledge. In the process of conversation, this commonsense knowledge information can be used to enrich the semantic information of each utterance and improve the accuracy of emotion recognition. In this paper, we propose a growing graph model for dialogues emotion detection based on retrieval of external knowledge atlas ATOMIC from local and global respectively, which can effectively represent the dialogues as a process variable in a sequence and the correlation among utterances also can be represented by the graph model. In particular, 1) we introduce a common sense knowledge graph for linking the commonsense knowledge retrieved from external knowledge atlas ATOMIC, which can effectively add auxiliary information to improve the performance of each utterance's representation. 2) We propose a novel self-supervised learning method for extracting the latent topic of each dialogue. Based on this design, we also propose an effective optimization mechanism to make the representation (embedding) of latent topic has a better distinction for the next operation. 3) Finally, the cross-attention module is utilized to combine the utterances' features and the latent conversation topic information. The attention mechanism can effectively use topic information to supplement the representation of utterances and improve recognition performance. The model is tested on three popular datasets in dialogue emotion detection and is empirically demonstrated to outperform the state-of-the-art approaches. Meanwhile, to demonstrate the performance of our approach, we also build a long dialogue dataset. The average length of each conversation is over 50 utterances. The final experimental results also demonstrate the superior performance of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默洋葱完成签到,获得积分20
刚刚
动漫大师发布了新的文献求助10
刚刚
nanlinhua发布了新的文献求助10
刚刚
刚刚
LU发布了新的文献求助10
1秒前
慕青应助韶冷梅采纳,获得10
1秒前
期待未来的自己应助TJC采纳,获得10
2秒前
2秒前
文良颜丑完成签到,获得积分10
2秒前
3秒前
奥利奥完成签到,获得积分10
3秒前
早日毕业发布了新的文献求助10
4秒前
女娇娥完成签到,获得积分10
4秒前
萨芬完成签到,获得积分10
4秒前
王京发布了新的文献求助30
4秒前
4秒前
英俊的铭应助yyy采纳,获得10
4秒前
飞飞发布了新的文献求助10
4秒前
5秒前
良辰应助he采纳,获得10
6秒前
SONG完成签到,获得积分10
7秒前
7秒前
张豪杰发布了新的文献求助10
7秒前
没所谓发布了新的文献求助10
7秒前
galaxy发布了新的文献求助10
7秒前
zxp驳回了打打应助
7秒前
123完成签到,获得积分10
8秒前
dandna完成签到 ,获得积分10
8秒前
orixero应助nanlinhua采纳,获得10
9秒前
9秒前
hao发布了新的文献求助10
9秒前
9秒前
韶冷梅完成签到,获得积分20
10秒前
隐形曼青应助小八儿采纳,获得10
10秒前
科研通AI5应助高丽华采纳,获得10
11秒前
bibgyueli发布了新的文献求助10
11秒前
13秒前
韶冷梅发布了新的文献求助10
13秒前
zhouqy8完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796238
求助须知:如何正确求助?哪些是违规求助? 3341180
关于积分的说明 10304661
捐赠科研通 3057743
什么是DOI,文献DOI怎么找? 1677834
邀请新用户注册赠送积分活动 805683
科研通“疑难数据库(出版商)”最低求助积分说明 762740