Consistent Synthetic Sequences Unlock Structural Diversity in Fully Atomistic De Novo Protein Design

作者
Reidenbach, Danny,Cao, Zhonglin,Zhang1, Zuobai,Didi, Kieran,Geffner, Tomas,Zhou Guoqing,Tang Jian,Dallago, Christian,Vahdat, Arash,Kucukbenli, Emine,Kreis, Karsten
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2512.01976
摘要

High-quality training datasets are crucial for the development of effective protein design models, but existing synthetic datasets often include unfavorable sequence-structure pairs, impairing generative model performance. We leverage ProteinMPNN, whose sequences are experimentally favorable as well as amenable to folding, together with structure prediction models to align high-quality synthetic structures with recoverable synthetic sequences. In that way, we create a new dataset designed specifically for training expressive, fully atomistic protein generators. By retraining La-Proteina, which models discrete residue type and side chain structure in a continuous latent space, on this dataset, we achieve new state-of-the-art results, with improvements of +54% in structural diversity and +27% in co-designability. To validate the broad utility of our approach, we further introduce Proteina Atomistica, a unified flow-based framework that jointly learns the distribution of protein backbone structure, discrete sequences, and atomistic side chains without latent variables. We again find that training on our new sequence-structure data dramatically boosts benchmark performance, improving \method's structural diversity by +73% and co-designability by +5%. Our work highlights the critical importance of aligned sequence-structure data for training high-performance de novo protein design models. All data will be publicly released.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kls发布了新的文献求助20
1秒前
沉静代秋发布了新的文献求助10
2秒前
首席医官完成签到,获得积分10
3秒前
3秒前
默listening发布了新的文献求助10
5秒前
小巧风华发布了新的文献求助30
5秒前
亚米完成签到,获得积分10
5秒前
今天完成签到,获得积分10
7秒前
7秒前
7秒前
12秒前
CodeCraft应助沉静代秋采纳,获得10
12秒前
12秒前
喜悦一德完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
初晨完成签到,获得积分20
15秒前
完美世界应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
斯文雪青发布了新的文献求助10
16秒前
16秒前
称心曼安应助科研通管家采纳,获得10
16秒前
mimi完成签到 ,获得积分10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
陈末应助科研通管家采纳,获得10
17秒前
称心曼安应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
默listening完成签到,获得积分10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
17秒前
英姑应助科研通管家采纳,获得10
18秒前
称心曼安应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425849
求助须知:如何正确求助?哪些是违规求助? 4539593
关于积分的说明 14169175
捐赠科研通 4457325
什么是DOI,文献DOI怎么找? 2444499
邀请新用户注册赠送积分活动 1435415
关于科研通互助平台的介绍 1412871