已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Joint liver and hepatic lesion segmentation in MRI using a hybrid CNN with transformer layers

分割 计算机科学 人工智能 磁共振成像 深度学习 卷积神经网络 模式识别(心理学) 模态(人机交互) 图像分割 放射科 医学
作者
Georg Hille,Shubham Agrawal,Pavan Tummala,Christian Wybranski,Maciej Pech,Alexey Surov,Sylvia Saalfeld
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107647-107647 被引量:29
标识
DOI:10.1016/j.cmpb.2023.107647
摘要

Backgound and Objective: Deep learning-based segmentation of the liver and hepatic lesions therein steadily gains relevance in clinical practice due to the increasing incidence of liver cancer each year. Whereas various network variants with overall promising results in the field of medical image segmentation have been successfully developed over the last years, almost all of them struggle with the challenge of accurately segmenting hepatic lesions in magnetic resonance imaging (MRI). This led to the idea of combining elements of convolutional and transformer-based architectures to overcome the existing limitations.This work presents a hybrid network called SWTR-Unet, consisting of a pretrained ResNet, transformer blocks as well as a common Unet-style decoder path. This network was primarily applied to single-modality non-contrast-enhanced liver MRI and additionally to the publicly available computed tomography (CT) data of the liver tumor segmentation (LiTS) challenge to verify the applicability on other modalities. For a broader evaluation, multiple state-of-the-art networks were implemented and applied, ensuring direct comparability. Furthermore, correlation analysis and an ablation study were carried out, to investigate various influencing factors on the segmentation accuracy of the presented method.With Dice similarity scores of averaged 98±2% for liver and 81±28% lesion segmentation on the MRI dataset and 97±2% and 79±25%, respectively on the CT dataset, the proposed SWTR-Unet proved to be a precise approach for liver and hepatic lesion segmentation with state-of-the-art results for MRI and competing accuracy in CT imaging.The achieved segmentation accuracy was found to be on par with manually performed expert segmentations as indicated by inter-observer variabilities for liver lesion segmentation. In conclusion, the presented method could save valuable time and resources in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Kevin完成签到,获得积分10
1秒前
adore发布了新的文献求助10
5秒前
大力出奇迹完成签到,获得积分10
7秒前
乔达摩完成签到 ,获得积分10
13秒前
脑洞疼应助于奕霖采纳,获得10
14秒前
着急的青枫应助111采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
Rainbow0224应助科研通管家采纳,获得10
22秒前
22秒前
30秒前
30秒前
byyyy完成签到,获得积分10
34秒前
Winkhl完成签到,获得积分10
34秒前
PSCs完成签到,获得积分10
36秒前
yundong完成签到,获得积分10
37秒前
浮游应助123采纳,获得10
38秒前
所所应助123采纳,获得10
38秒前
斯文败类应助123采纳,获得10
38秒前
桐桐应助123采纳,获得10
38秒前
xwtlbq完成签到 ,获得积分10
41秒前
懦弱的山柳完成签到 ,获得积分10
44秒前
Qing完成签到 ,获得积分10
44秒前
45秒前
传奇3应助betsydouglas14采纳,获得10
48秒前
49秒前
52秒前
52秒前
徐瑶瑶发布了新的文献求助10
53秒前
陶醉天问应助古炮采纳,获得10
54秒前
Zo发布了新的文献求助30
56秒前
幽默白秋发布了新的文献求助30
57秒前
小新AA发布了新的文献求助10
1分钟前
华蔓月完成签到,获得积分10
1分钟前
river_121完成签到,获得积分10
1分钟前
Orange应助CarryZ8采纳,获得10
1分钟前
徐瑶瑶完成签到,获得积分20
1分钟前
1分钟前
思源应助暴躁的雪碧采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805224
求助须知:如何正确求助?哪些是违规求助? 4121284
关于积分的说明 12751526
捐赠科研通 3854727
什么是DOI,文献DOI怎么找? 2122748
邀请新用户注册赠送积分活动 1144943
关于科研通互助平台的介绍 1036240