Joint liver and hepatic lesion segmentation in MRI using a hybrid CNN with transformer layers

分割 计算机科学 人工智能 磁共振成像 深度学习 卷积神经网络 模式识别(心理学) 模态(人机交互) 图像分割 放射科 医学
作者
Georg Hille,Shubham Agrawal,Pavan Tummala,Christian Wybranski,Maciej Pech,Alexey Surov,Sylvia Saalfeld
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107647-107647 被引量:29
标识
DOI:10.1016/j.cmpb.2023.107647
摘要

Backgound and Objective: Deep learning-based segmentation of the liver and hepatic lesions therein steadily gains relevance in clinical practice due to the increasing incidence of liver cancer each year. Whereas various network variants with overall promising results in the field of medical image segmentation have been successfully developed over the last years, almost all of them struggle with the challenge of accurately segmenting hepatic lesions in magnetic resonance imaging (MRI). This led to the idea of combining elements of convolutional and transformer-based architectures to overcome the existing limitations.This work presents a hybrid network called SWTR-Unet, consisting of a pretrained ResNet, transformer blocks as well as a common Unet-style decoder path. This network was primarily applied to single-modality non-contrast-enhanced liver MRI and additionally to the publicly available computed tomography (CT) data of the liver tumor segmentation (LiTS) challenge to verify the applicability on other modalities. For a broader evaluation, multiple state-of-the-art networks were implemented and applied, ensuring direct comparability. Furthermore, correlation analysis and an ablation study were carried out, to investigate various influencing factors on the segmentation accuracy of the presented method.With Dice similarity scores of averaged 98±2% for liver and 81±28% lesion segmentation on the MRI dataset and 97±2% and 79±25%, respectively on the CT dataset, the proposed SWTR-Unet proved to be a precise approach for liver and hepatic lesion segmentation with state-of-the-art results for MRI and competing accuracy in CT imaging.The achieved segmentation accuracy was found to be on par with manually performed expert segmentations as indicated by inter-observer variabilities for liver lesion segmentation. In conclusion, the presented method could save valuable time and resources in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
剑指天涯完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助安详的冬瓜采纳,获得10
5秒前
Ahua发布了新的文献求助10
6秒前
外向的易蓉完成签到 ,获得积分10
6秒前
koh完成签到,获得积分10
6秒前
心想事陈发布了新的文献求助10
7秒前
哈哈发布了新的文献求助20
7秒前
小雨完成签到,获得积分10
7秒前
7秒前
8秒前
邢女士完成签到,获得积分10
8秒前
赘婿应助小木林采纳,获得10
8秒前
8秒前
wish发布了新的文献求助10
8秒前
楼丶发布了新的文献求助10
9秒前
十一发布了新的文献求助10
9秒前
9秒前
曲十八发布了新的文献求助10
9秒前
9秒前
9秒前
核动力牛马完成签到,获得积分10
9秒前
10秒前
YE完成签到 ,获得积分20
10秒前
Rainor发布了新的文献求助20
10秒前
lingjunjie发布了新的文献求助10
11秒前
11秒前
Ricewind完成签到,获得积分20
12秒前
zhuzhu007完成签到 ,获得积分10
12秒前
淑儿哥哥发布了新的文献求助10
12秒前
13秒前
orixero应助boldhammer采纳,获得10
13秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805810
求助须知:如何正确求助?哪些是违规求助? 3350734
关于积分的说明 10350610
捐赠科研通 3066591
什么是DOI,文献DOI怎么找? 1683999
邀请新用户注册赠送积分活动 809197
科研通“疑难数据库(出版商)”最低求助积分说明 765407