Machine learning‐based clustering identifies obesity subgroups with differential multi‐omics profiles and metabolic patterns

肥胖 组学 胰岛素抵抗 聚类分析 疾病 代谢组学 医学 生物信息学 多元统计 糖尿病 蛋白质组学 星团(航天器) 内科学 生物 内分泌学 机器学习 遗传学 基因 计算机科学 程序设计语言
作者
Mohammad Yaser Anwar,Heather M. Highland,Victoria L. Buchanan,Mariaelisa Graff,Kristin Young,Kent D. Taylor,Russell P. Tracy,Peter Durda,Yongmei Liu,Craig Johnson,François Aguet,Kristin Ardlie,Robert E. Gerszten,Clary B. Clish,Leslie A. Lange,Jingzhong Ding,Mark O. Goodarzi,Yii‐Der Ida Chen,Gina M. Peloso,Xiuqing Guo
出处
期刊:Obesity [Wiley]
卷期号:32 (11): 2024-2034 被引量:3
标识
DOI:10.1002/oby.24137
摘要

Abstract Objective Individuals living with obesity are differentially susceptible to cardiometabolic diseases. We hypothesized that an integrative multi‐omics approach might improve identification of subgroups of individuals with obesity who have distinct cardiometabolic disease patterns. Methods We performed machine learning‐based, integrative unsupervised clustering to identify proteomics‐ and metabolomics‐defined subpopulations of individuals living with obesity (BMI ≥ 30 kg/m 2 ), leveraging data from 243 individuals in the Multi‐Ethnic Study of Atherosclerosis (MESA) cohort. Omics that contributed to the observed clusters were functionally characterized. We performed multivariate regression to assess whether the individuals in each cluster demonstrated differential patterns of cardiometabolic traits. Results We identified two distinct clusters (iCluster1 and 2). iCluster2 had significantly higher average BMI values, fasting blood glucose, and inflammation. iCluster1 was associated with higher levels of total cholesterol and high‐density lipoprotein cholesterol. Pathways mediating cell growth, lipogenesis, and energy expenditures were positively associated with iCluster1. Inflammatory response and insulin resistance pathways were positively associated with iCluster2. Conclusions Although the two identified clusters may represent progressive obesity‐related pathologic processes measured at different stages, other mechanisms in combination could also underpin the identified clusters given no significant age difference between the comparative groups. For instance, clusters may reflect differences in dietary/behavioral patterns or differential rates of metabolic damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mm完成签到 ,获得积分10
2秒前
3秒前
赘婿应助感动笑采纳,获得10
3秒前
4秒前
wuyuzhu发布了新的文献求助10
4秒前
月亮打烊了完成签到,获得积分10
4秒前
aaa完成签到,获得积分10
4秒前
ding应助ZY采纳,获得30
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
calm发布了新的文献求助10
5秒前
冬亦发布了新的文献求助10
5秒前
文艺宛秋完成签到 ,获得积分10
5秒前
6秒前
852应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
ravenye应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
ravenye应助科研通管家采纳,获得10
7秒前
7秒前
哈基米德举报大妙妙求助涉嫌违规
7秒前
7秒前
Yikepp完成签到,获得积分10
8秒前
科研废物完成签到 ,获得积分10
9秒前
平平发布了新的文献求助10
9秒前
excellent_shit完成签到,获得积分10
10秒前
华仔应助hyjwpk采纳,获得10
10秒前
李嘻嘻完成签到 ,获得积分10
10秒前
阳光完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430672
求助须知:如何正确求助?哪些是违规求助? 4543706
关于积分的说明 14188806
捐赠科研通 4462148
什么是DOI,文献DOI怎么找? 2446437
邀请新用户注册赠送积分活动 1437811
关于科研通互助平台的介绍 1414523