Machine learning‐based clustering identifies obesity subgroups with differential multi‐omics profiles and metabolic patterns

肥胖 组学 胰岛素抵抗 聚类分析 疾病 代谢组学 医学 生物信息学 多元统计 糖尿病 蛋白质组学 星团(航天器) 内科学 生物 内分泌学 机器学习 遗传学 基因 计算机科学 程序设计语言
作者
Mohammad Yaser Anwar,Heather M. Highland,Victoria L. Buchanan,Mariaelisa Graff,Kristin Young,Kent D. Taylor,Russell P. Tracy,Peter Durda,Yongmei Liu,Craig Johnson,François Aguet,Kristin Ardlie,Robert E. Gerszten,Clary B. Clish,Leslie A. Lange,Jingzhong Ding,Mark O. Goodarzi,Yii‐Der Ida Chen,Gina M. Peloso,Xiuqing Guo
出处
期刊:Obesity [Wiley]
卷期号:32 (11): 2024-2034 被引量:3
标识
DOI:10.1002/oby.24137
摘要

Abstract Objective Individuals living with obesity are differentially susceptible to cardiometabolic diseases. We hypothesized that an integrative multi‐omics approach might improve identification of subgroups of individuals with obesity who have distinct cardiometabolic disease patterns. Methods We performed machine learning‐based, integrative unsupervised clustering to identify proteomics‐ and metabolomics‐defined subpopulations of individuals living with obesity (BMI ≥ 30 kg/m 2 ), leveraging data from 243 individuals in the Multi‐Ethnic Study of Atherosclerosis (MESA) cohort. Omics that contributed to the observed clusters were functionally characterized. We performed multivariate regression to assess whether the individuals in each cluster demonstrated differential patterns of cardiometabolic traits. Results We identified two distinct clusters (iCluster1 and 2). iCluster2 had significantly higher average BMI values, fasting blood glucose, and inflammation. iCluster1 was associated with higher levels of total cholesterol and high‐density lipoprotein cholesterol. Pathways mediating cell growth, lipogenesis, and energy expenditures were positively associated with iCluster1. Inflammatory response and insulin resistance pathways were positively associated with iCluster2. Conclusions Although the two identified clusters may represent progressive obesity‐related pathologic processes measured at different stages, other mechanisms in combination could also underpin the identified clusters given no significant age difference between the comparative groups. For instance, clusters may reflect differences in dietary/behavioral patterns or differential rates of metabolic damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五个字的下午完成签到,获得积分10
刚刚
自然水风完成签到,获得积分10
刚刚
科研韭菜完成签到 ,获得积分10
刚刚
苹果骑士发布了新的文献求助10
刚刚
1秒前
Weining完成签到,获得积分10
1秒前
Upupuu完成签到,获得积分10
2秒前
Air完成签到 ,获得积分10
2秒前
amber完成签到 ,获得积分10
2秒前
3秒前
可爱的函函应助smin采纳,获得10
3秒前
Rmshuang完成签到,获得积分10
4秒前
嘟嘟发布了新的文献求助10
4秒前
genomed完成签到,获得积分0
4秒前
csu_zs完成签到,获得积分10
4秒前
4秒前
phoebe应助文件撤销了驳回
4秒前
情怀应助刘子龙采纳,获得10
5秒前
Pierce发布了新的文献求助10
6秒前
HH完成签到,获得积分10
6秒前
bigpluto完成签到,获得积分10
6秒前
坚强幼荷完成签到,获得积分10
7秒前
泥撑完成签到,获得积分10
7秒前
泉水丁冬2023完成签到,获得积分10
7秒前
mooser完成签到,获得积分10
7秒前
路人应助trans采纳,获得200
7秒前
7秒前
7秒前
Zenobia发布了新的文献求助10
8秒前
泡泡啰叽完成签到,获得积分10
8秒前
samtol完成签到,获得积分10
8秒前
坚定书竹完成签到 ,获得积分10
9秒前
Auston_zhong应助Zkz采纳,获得10
9秒前
刘子龙完成签到,获得积分10
10秒前
xwwisher完成签到 ,获得积分10
10秒前
modesty完成签到,获得积分10
10秒前
斯寜应助CXH采纳,获得10
10秒前
科目三应助十七号日落采纳,获得10
10秒前
Yan完成签到 ,获得积分10
10秒前
坦率书本完成签到,获得积分10
11秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830668
求助须知:如何正确求助?哪些是违规求助? 3372971
关于积分的说明 10476375
捐赠科研通 3092950
什么是DOI,文献DOI怎么找? 1702308
邀请新用户注册赠送积分活动 818920
科研通“疑难数据库(出版商)”最低求助积分说明 771153