Role of the AMPA receptor in antidepressant effects of ketamine and potential of AMPA receptor potentiators as a novel antidepressant

增强剂 AMPA受体 抗抑郁药 拟精神病 药理学 神经科学 氯胺酮 医学 谷氨酸受体 受体 NMDA受体 心理学 海马体 内科学
作者
Atsushi Suzuki,Hiroe Hara,Haruhide Kimura
出处
期刊:Neuropharmacology [Elsevier BV]
卷期号:222: 109308-109308 被引量:25
标识
DOI:10.1016/j.neuropharm.2022.109308
摘要

Ketamine exerts rapid and long-lasting antidepressant effects in patients with treatment-resistant depression. However, its clinical use is limited by its undesirable psychotomimetic side effects. Accumulating evidence from preclinical studies has shown that the antidepressant effects of ketamine are dependent on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) activation, which triggers activation of the mechanistic target of rapamycin pathway and brain-derived neurotrophic factor release. Thus, AMPA-R has emerged as a promising new target for novel antidepressants with a rapid onset of action. However, almost all known AMPA-R potentiators carry the risk of a narrow bell-shaped dose-response curve and a poor safety margin against seizures. Our data suggest that agonistic activity is not only related to the risks of bell-shaped dose-response curves and seizures but also to the reduced synaptic transmission and procognitive effects of AMPA-R potentiators. In this review, we describe our original screening approach that led to the discovery of an investigational AMPA-R potentiator with low agonistic activity, TAK-653. We further review the in vitro and in vivo profiles of TAK-653, including its procognitive and antidepressant-like effects, as well as its safety profile, in comparison with known AMPA-R potentiators with agonistic activity and AMPA, an AMPA-R agonist. The low agnostic activity of TAK-653 may overcome limitations of known AMPA-R potentiators. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WF完成签到,获得积分10
1秒前
言亦云完成签到,获得积分10
2秒前
2秒前
LZJ完成签到,获得积分10
3秒前
lovence发布了新的文献求助10
4秒前
阿哇完成签到,获得积分10
4秒前
瀚霖发布了新的文献求助10
5秒前
liuzhanyu完成签到,获得积分10
5秒前
5秒前
7秒前
8秒前
9秒前
龙傲天发布了新的文献求助10
9秒前
李元堯的狗完成签到,获得积分10
10秒前
11秒前
nini完成签到,获得积分10
11秒前
迪迦发布了新的文献求助10
12秒前
mhh发布了新的文献求助10
13秒前
13秒前
14秒前
wangxiaobin发布了新的文献求助10
16秒前
fbwg发布了新的文献求助10
16秒前
16秒前
Cambridge完成签到,获得积分10
20秒前
20秒前
欣欣发布了新的文献求助10
20秒前
xiaoliume完成签到,获得积分10
21秒前
21秒前
拓片完成签到,获得积分20
21秒前
23秒前
24秒前
fbwg完成签到 ,获得积分10
24秒前
柴郡喵完成签到,获得积分10
24秒前
Cambridge发布了新的文献求助10
25秒前
顾矜应助嗒嗒小医生采纳,获得20
26秒前
lanadalray发布了新的文献求助10
26秒前
27秒前
27秒前
wangxiaobin完成签到,获得积分10
27秒前
钱仙人完成签到,获得积分10
28秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472