Foundation Model-Based Multimodal Remote Sensing Data Classification

计算机科学 遥感 基础(证据) 地质学 考古 历史
作者
Xin He,Yushi Chen,Lingbo Huang,Danfeng Hong,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:17
标识
DOI:10.1109/tgrs.2023.3344698
摘要

With the increasing availability and openness of remote sensing (RS) data collected from diverse sensors, there has been a growing interest in multimodal RS data classification. Nowadays, in the area of deep learning, there is a paradigm shift with the rise of foundation models, which are trained on large-scale datasets and are adaptable to a wide range of downstream tasks. In this study, the potential and effectiveness of foundation models for multimodal RS data classification is investigated. The training datasets of foundation models and multimodal RS datasets are quite different, and therefore, it is difficult to use a pretrained foundation model for multimodal RS data classification directly. To mitigate this difficulty, this article proposes a foundation model adaptation (FMA) framework for multimodal RS data classification without fine-tuning the parameters. Specifically, two learnable modules, i.e., cross-spatial interaction module and cross-channel interaction module, are proposed to add to the foundation model for extracting multimodal-specific representations. The cross-spatial and cross-channel interaction modules extract the characteristics of unimodal features along the spatial dimension and channel dimension, respectively. To effectively tackle the disparities among various RS modalities, an alignment approach (FMA2) is further explored based on the FMA. The FMA2 describes dependencies between different modalities by establishing a coupling score function, which can further enhance classification performance. To demonstrate the effectiveness and superiority of the FMA framework, comprehensive experiments are conducted on three multimodal RS datasets, showing improvement over the advanced multimodal RS data classification image methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小林发布了新的文献求助10
刚刚
yaya完成签到 ,获得积分10
3秒前
4秒前
4秒前
ZY完成签到 ,获得积分10
8秒前
暮晓见完成签到 ,获得积分10
9秒前
马甲发布了新的文献求助10
9秒前
VDC发布了新的文献求助10
10秒前
小林完成签到,获得积分10
10秒前
名丿完成签到,获得积分10
11秒前
布毁黑完成签到 ,获得积分10
15秒前
HOPE发布了新的文献求助10
16秒前
李冰洋完成签到,获得积分10
23秒前
所所应助Shandongdaxiu采纳,获得10
25秒前
左登峰完成签到,获得积分10
26秒前
Jro完成签到,获得积分10
33秒前
科研通AI5应助科研小白采纳,获得10
35秒前
35秒前
allegiance完成签到 ,获得积分10
36秒前
guohong完成签到 ,获得积分10
36秒前
37秒前
眼睛大又蓝完成签到,获得积分10
38秒前
李向东发布了新的文献求助10
40秒前
小四喜发布了新的文献求助10
42秒前
科研通AI5应助李向东采纳,获得10
48秒前
成就莞完成签到,获得积分10
49秒前
大气的乌冬面完成签到,获得积分10
51秒前
51秒前
51秒前
科研通AI5应助sheila采纳,获得10
55秒前
CipherSage应助Alex采纳,获得10
57秒前
Owen应助shuyu采纳,获得10
58秒前
算不尽发布了新的文献求助10
58秒前
科研小白发布了新的文献求助10
59秒前
科科科科呃完成签到,获得积分10
59秒前
乐乐应助钱念波采纳,获得10
59秒前
1分钟前
无为完成签到 ,获得积分10
1分钟前
1分钟前
北秋颐完成签到,获得积分20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751