Foundation Model-Based Multimodal Remote Sensing Data Classification

计算机科学 遥感 基础(证据) 地质学 考古 历史
作者
Xin He,Yushi Chen,Lingbo Huang,Danfeng Hong,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:18
标识
DOI:10.1109/tgrs.2023.3344698
摘要

With the increasing availability and openness of remote sensing (RS) data collected from diverse sensors, there has been a growing interest in multimodal RS data classification. Nowadays, in the area of deep learning, there is a paradigm shift with the rise of foundation models, which are trained on large-scale datasets and are adaptable to a wide range of downstream tasks. In this study, the potential and effectiveness of foundation models for multimodal RS data classification is investigated. The training datasets of foundation models and multimodal RS datasets are quite different, and therefore, it is difficult to use a pretrained foundation model for multimodal RS data classification directly. To mitigate this difficulty, this article proposes a foundation model adaptation (FMA) framework for multimodal RS data classification without fine-tuning the parameters. Specifically, two learnable modules, i.e., cross-spatial interaction module and cross-channel interaction module, are proposed to add to the foundation model for extracting multimodal-specific representations. The cross-spatial and cross-channel interaction modules extract the characteristics of unimodal features along the spatial dimension and channel dimension, respectively. To effectively tackle the disparities among various RS modalities, an alignment approach (FMA2) is further explored based on the FMA. The FMA2 describes dependencies between different modalities by establishing a coupling score function, which can further enhance classification performance. To demonstrate the effectiveness and superiority of the FMA framework, comprehensive experiments are conducted on three multimodal RS datasets, showing improvement over the advanced multimodal RS data classification image methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
yu完成签到,获得积分10
1秒前
wanci应助春风不渡人间采纳,获得30
2秒前
张无缺完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
彭于晏应助寒冷谷雪采纳,获得10
5秒前
8秒前
amen完成签到 ,获得积分10
8秒前
万能图书馆应助勇敢的心采纳,获得10
9秒前
林小鱼发布了新的文献求助10
9秒前
物理输出法师完成签到 ,获得积分10
9秒前
张张张xxx完成签到,获得积分10
9秒前
10秒前
10秒前
你说完成签到,获得积分10
11秒前
11秒前
科研通AI6应助大胆铃铛采纳,获得10
12秒前
长情笑柳应助珈蓝采纳,获得10
12秒前
彩色芷发布了新的文献求助10
13秒前
高高很厉害应助聂难敌采纳,获得50
13秒前
浮游应助老实凝竹采纳,获得10
14秒前
Zx_1993应助Ann采纳,获得20
14秒前
14秒前
15秒前
ice完成签到,获得积分10
15秒前
ldx完成签到,获得积分10
16秒前
和谐的敏发布了新的文献求助10
17秒前
碧蓝绮山应助Aicy1111111采纳,获得10
17秒前
星辰大海应助12345采纳,获得10
18秒前
江上挽风吟墨染完成签到,获得积分10
18秒前
王一正完成签到,获得积分10
21秒前
22秒前
王小雨完成签到 ,获得积分10
22秒前
huangyikun完成签到,获得积分10
22秒前
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930