Bubble feature extraction in subcooled flow boiling using AI-based object detection and tracking techniques

过冷 气泡 跟踪(教育) 流动沸腾 沸腾 流量(数学) 材料科学 萃取(化学) 计算机科学 机械 人工智能 热力学 色谱法 核沸腾 物理 化学 传热 热流密度 心理学 教育学
作者
Wen Zhou,Shuichiro Miwa,Ryoma Tsujimura,Thanh-Binh Nguyen,Tomio Okawa,Koji Okamoto
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:222: 125188-125188 被引量:5
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125188
摘要

Subcooled flow boiling is a pivotal process prevalent in a myriad of scientific investigations and engineering applications, particularly in the realm of heat transfer system design and the foundational study of phase transition dynamics. The life cycle of bubbles, from nucleation and growth to departure and coalescence, along with their interaction with heat and mass transfer processes, critically influence the overall heat transfer efficiency. Nonetheless, the drastic transformations that bubbles undergo from inception to disappearance in subcooled flow boiling pose significant challenges for conventional bubble detection methods, particularly concerning condensing bubbles. In light of this, a cutting-edge AI-based method for condensing bubble detection and tracking in subcooled flow boiling is developed and validated in the present study. The present approach first identifies bubbles using object detection technique and subsequently tracks them across sequential frames. The proposed method demonstrates a robust capability of detecting approximately 90% of condensing bubbles within subcooled flow boiling. Furthermore, key thermal-hydraulic parameters in subcooled flow boiling such as aspect ratio, Sauter mean diameter, departure diameter, growth time, and bubble lifetime, were successfully extracted using the proposed AI-based model. Its results are compared with empirical correlations, and show a commendable consistency, demonstrating the viability and accuracy of the advanced AI-based model in analyzing the complex dynamics of subcooled flow boiling. The advantage of the newly developed method is preliminarily verified in the present study, and further validation is underway to corroborate its boarded application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助柏林熊采纳,获得10
3秒前
踏实的怜菡完成签到 ,获得积分10
4秒前
手可摘星陈同学完成签到 ,获得积分10
6秒前
onevip完成签到,获得积分0
7秒前
7秒前
陈默完成签到 ,获得积分10
9秒前
科研通AI2S应助FG采纳,获得10
10秒前
qiancib202完成签到,获得积分10
14秒前
22秒前
22秒前
西红柿不吃皮完成签到 ,获得积分10
24秒前
24秒前
linhuafeng完成签到 ,获得积分10
25秒前
科研通AI2S应助海猫食堂采纳,获得10
26秒前
柏林熊发布了新的文献求助10
30秒前
星希完成签到 ,获得积分10
35秒前
小叶子完成签到 ,获得积分10
37秒前
zenabia完成签到 ,获得积分10
38秒前
惜曦完成签到 ,获得积分10
40秒前
luffy完成签到 ,获得积分10
40秒前
英俊的念寒完成签到,获得积分10
43秒前
明天更好完成签到 ,获得积分10
43秒前
科研通AI2S应助海猫食堂采纳,获得10
46秒前
48秒前
俏皮汉堡完成签到 ,获得积分10
57秒前
英姑应助Jeffery426采纳,获得10
1分钟前
1分钟前
科研张完成签到 ,获得积分10
1分钟前
Joker完成签到,获得积分10
1分钟前
微雨若,,完成签到 ,获得积分10
1分钟前
时2完成签到,获得积分10
1分钟前
风不尽,树不静完成签到 ,获得积分10
1分钟前
端庄代荷完成签到 ,获得积分10
1分钟前
futianyu完成签到 ,获得积分0
1分钟前
青黛完成签到 ,获得积分10
1分钟前
典雅问寒应助海猫食堂采纳,获得10
1分钟前
ES完成签到 ,获得积分10
1分钟前
畅快的雪柳完成签到 ,获得积分10
1分钟前
Sabrina完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379687
关于积分的说明 10510136
捐赠科研通 3099308
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615