Evaluating Machine Learning Methods of Analyzing Multiclass Metabolomics

规范化(社会学) 计算机科学 人工智能 机器学习 代谢组学 多类分类 缺少数据 数据库规范化 数据挖掘 插补(统计学) 数据集 模式识别(心理学) 支持向量机 生物信息学 社会学 生物 人类学
作者
Yaguo Gong,Wei Ding,Panpan Wang,Qibiao Wu,Xiaojun Yao,Qingxia Yang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (24): 7628-7641 被引量:11
标识
DOI:10.1021/acs.jcim.3c01525
摘要

Multiclass metabolomic studies have become popular for revealing the differences in multiple stages of complex diseases, various lifestyles, or the effects of specific treatments. In multiclass metabolomics, there are multiple data manipulation steps for analyzing raw data, which consist of data filtering, the imputation of missing values, data normalization, marker identification, sample separation, classification, and so on. In each step, several to dozens of machine learning methods can be chosen for the given data set, with potentially hundreds or thousands of method combinations in the whole data processing chain. Therefore, a clear understanding of these machine learning methods is helpful for selecting an appropriate method combination for obtaining stable and reliable analytical results of specific data. However, there has rarely been an overall introduction or evaluation of these methods based on multiclass metabolomic data. Herein, detailed descriptions of these machine learning methods in multiple data manipulation steps are reviewed. Moreover, an assessment of these methods was performed using a benchmark data set for multiclass metabolomics. First, 12 imputation methods for imputing missing values were evaluated based on the PSS (Procrustes statistical shape analysis) and NRMSE (normalized root-mean-square error) values. Second, 17 normalization methods for processing multiclass metabolomic data were evaluated by applying the PMAD (pooled median absolute deviation) value. Third, different methods of identifying markers of multiclass metabolomics were evaluated based on the CWrel (relative weighted consistency) value. Fourth, nine classification methods for constructing multiclass models were assessed using the AUC (area under the curve) value. Performance evaluations of machine learning methods are highly recommended to select the most appropriate method combination before performing the final analysis of the given data. Overall, detailed descriptions and evaluation of various machine learning methods are expected to improve analyses of multiclass metabolomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大冬瓜发布了新的文献求助10
2秒前
缥缈老九完成签到,获得积分10
3秒前
潘qb发布了新的文献求助10
4秒前
manman完成签到,获得积分10
4秒前
小颖yy完成签到,获得积分10
4秒前
4秒前
地表飞猪给Everything的求助进行了留言
5秒前
NexusExplorer应助huba采纳,获得10
5秒前
Dxy-TOFA发布了新的文献求助10
6秒前
情怀应助ting采纳,获得10
7秒前
Clown完成签到,获得积分10
7秒前
li2010完成签到,获得积分10
8秒前
9秒前
大冬瓜完成签到,获得积分10
10秒前
科研通AI5应助ordin采纳,获得10
11秒前
monica完成签到,获得积分20
12秒前
充电宝应助孟子豪采纳,获得10
13秒前
映城应助野性的乌冬面采纳,获得30
13秒前
小詹完成签到,获得积分10
13秒前
感动白开水完成签到,获得积分10
14秒前
lumous完成签到,获得积分20
14秒前
15秒前
懒虫儿坤发布了新的文献求助10
16秒前
Gaopkid完成签到,获得积分10
16秒前
yyc666发布了新的文献求助10
18秒前
小蘑菇应助吞了大象的蛇采纳,获得10
20秒前
xmj发布了新的文献求助20
20秒前
靠谱发布了新的文献求助10
21秒前
22秒前
lxc完成签到,获得积分10
23秒前
勤劳大白完成签到,获得积分10
25秒前
28秒前
MchemG应助一一采纳,获得10
28秒前
28秒前
薛小蘖完成签到,获得积分10
28秒前
GG发布了新的文献求助10
29秒前
靠谱完成签到,获得积分10
29秒前
艾森豪威尔完成签到 ,获得积分10
32秒前
端庄的白开水完成签到,获得积分10
32秒前
DrWang发布了新的文献求助10
32秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829913
求助须知:如何正确求助?哪些是违规求助? 3372473
关于积分的说明 10472583
捐赠科研通 3091985
什么是DOI,文献DOI怎么找? 1701691
邀请新用户注册赠送积分活动 818590
科研通“疑难数据库(出版商)”最低求助积分说明 770961