清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimizing Source Apportionment of OVOCs With Machine Learning‐Enhanced Photochemical Models

分摊 环境科学 法学 政治学
作者
Yu Zou,Xiaohong Guan,Roberto Flores,Xiaolu Yan,Xiaoming Liang,L. Fan,Tao Deng,Xue Deng,Daiqi Ye,Paul V. Doskey
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:130 (10)
标识
DOI:10.1029/2024jd043080
摘要

Abstract The photochemical age parameterization model is widely used to analyze primary and secondary sources of oxygenated volatile organic compounds (OVOCs). However, a key challenge lies in selecting appropriate tracers chemicals used to estimate contributions from different emission sources. Accurate tracer selection is crucial for improving source apportionment accuracy, yet it is often constrained by local emission inventories and may not fully capture rapid atmospheric chemical transformations introducing uncertainty in OVOC apportionment. This study presents a novel approach integrating eight different machine learning methods to identify optimal tracers for OVOCs during extreme summer temperatures (experimental group) and average spring temperatures (control group). Our results demonstrated notable differences in tracer effectiveness between these two groups. In the spring, toluene and carbon monoxide (CO) were identified as the most effective tracers for OVOCs with high and low reactivity, respectively. In the summer, acetylene or CO were better suited for moderate and low reactivity OVOCs. By incorporating machine learning for tracer selection, we significantly improved the accuracy of the photochemical age parameterization model. The machine learning outputs correlated well with the model's performance particularly in terms of fitting accuracy of OVOCs. However, extremely high temperatures during summer disrupted the usual patterns of OVOC production and removal, which led to inconsistencies in matching high reactivity OVOCs with their tracers. Future research involves collecting more data on OVOC behavior under high‐temperature conditions and applying Fourier transformation techniques. This will help in identifying characteristic patterns and improving the dynamic accuracy of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁青寒完成签到,获得积分10
36秒前
49秒前
啊咧发布了新的文献求助10
53秒前
方白秋完成签到,获得积分10
55秒前
merrylake完成签到 ,获得积分10
1分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
lili完成签到,获得积分10
3分钟前
SL完成签到,获得积分10
3分钟前
3分钟前
SL发布了新的文献求助10
3分钟前
Ms_Galaxea完成签到,获得积分10
3分钟前
4分钟前
共享精神应助实验狗采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
crown完成签到,获得积分10
5分钟前
5分钟前
5分钟前
实验狗发布了新的文献求助10
5分钟前
hongt05完成签到 ,获得积分10
6分钟前
SCI的芷蝶完成签到 ,获得积分10
7分钟前
瓦力完成签到 ,获得积分10
7分钟前
姜生在树上完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
WYK完成签到 ,获得积分10
8分钟前
9分钟前
冷傲半邪完成签到,获得积分10
9分钟前
wentao发布了新的文献求助10
9分钟前
9分钟前
10分钟前
李燊发布了新的文献求助10
10分钟前
现实的俊驰完成签到 ,获得积分10
10分钟前
Benhnhk21完成签到,获得积分10
11分钟前
11分钟前
11分钟前
11分钟前
yuhang完成签到 ,获得积分10
11分钟前
12分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830495
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475449
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702209
邀请新用户注册赠送积分活动 818825
科研通“疑难数据库(出版商)”最低求助积分说明 771101