Intraoperative brain tumor classification via laser-induced fluorescence spectroscopy and machine learning

离体 医学 胶质瘤 荧光团 体内 接收机工作特性 垂体腺瘤 腺瘤 病理 核医学 人工智能 荧光 计算机科学 内科学 癌症研究 生物 光学 物理 生物技术
作者
Tanner J. Zachem,Jacob Sperber,Sully F. Chen,Syed M. Adil,Benjamin D. Wissel,Gregory Chamberlin,Edwin Owolo,Annee Nguyen,Kerri‐Anne Crowell,James E. Herndon,Ralph Abi Hachem,David W. Jang,Thomas J. Cummings,Margaret Johnson,William C. Eward,Anoop P. Patel,Jordan Komisarow,Steven Cook,Derek G. Southwell,Peter E. Fecci
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:: 1-10
标识
DOI:10.3171/2024.12.jns242041
摘要

OBJECTIVE To optimize neurosurgical tumor resection, tissue types and borders must be appropriately identified. Authors of this study established the use of a nondestructive laser-based endogenous fluorescence spectroscopy device, "TumorID," to almost immediately classify a specimen as glioma, meningioma, pituitary adenoma, or nonneoplastic tissue in the operating room, utilizing a machine learning algorithm. METHODS TumorID requires only 0.5 seconds to collect data, without the need for any dyes or tissue manipulation, and utilizes a 100-mW, 405-nm laser that does not damage the tissue. The system was used in the operating room to scan ex vivo specimens from 46 patients (mean age 52 years) with glioma (8 patients), meningioma (10 patients), pituitary adenoma (23 patients), and nonneoplastic tissue resected during an epilepsy operation (5 patients). A support vector machine algorithm was trained to distinguish between these lesions and classify them in near real time. Statistical significance was determined through a generalized estimating equation on the area under the known fluorophore emission regions for free reduced nicotinamide adenine dinucleotide (NADH), bound NADH, flavin adenine dinucleotide, and neutral porphyrins. RESULTS Ultimately, the machine learning model showed a high degree of classification power with a multiclass area under the receiver operating characteristic curve of 0.809 ± 0.002. The areas under the curve for neutral porphyrins were found to be statistically significant (p < 0.001) and to have the largest impact on model output. CONCLUSIONS This initial ex vivo clinical study demonstrated the ability of TumorID to rapidly differentiate and classify various pathologies and surrounding brain in a configuration that can be easily translated to scan in vivo. This classification power could allow TumorID to augment surgical decision-making by enabling rapid intraoperative tissue diagnostics and border delineation, potentially improving patient outcomes by allowing for a more informed and complete resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容的天空完成签到,获得积分10
1秒前
1秒前
1秒前
Orange应助weddcf采纳,获得10
1秒前
aaaaa完成签到 ,获得积分20
1秒前
2秒前
HYLynn完成签到,获得积分10
2秒前
3秒前
3秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
高高远山完成签到,获得积分10
6秒前
张汉三发布了新的文献求助10
6秒前
研友_P85D6Z完成签到,获得积分10
6秒前
6秒前
LOTUS发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
划分完成签到,获得积分10
9秒前
郭郭发布了新的文献求助30
9秒前
幸运花花完成签到,获得积分10
9秒前
Lucas发布了新的文献求助10
9秒前
远山完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
汉堡包应助FFF采纳,获得10
11秒前
12秒前
Orange应助安静的幼旋采纳,获得10
13秒前
俏皮道之完成签到,获得积分10
13秒前
13秒前
13秒前
怡神001发布了新的文献求助10
14秒前
小立发布了新的文献求助10
14秒前
14秒前
FashionBoy应助医研采纳,获得10
15秒前
科研通AI6应助qq采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297