Numerical Simulation of Polyacrylamide Hydrogel Prepared via Thermally Initiated Frontal Polymerization

固化(化学) 材料科学 放热反应 单体 聚合 差示扫描量热法 自愈水凝胶 自催化 聚合物 化学工程 热力学 高分子化学 复合材料 化学 有机化学 催化作用 物理 工程类
作者
Xiong Yi,Shengfang Li,Pin Wen,Shilin Yan
出处
期刊:Polymers [MDPI AG]
卷期号:16 (7): 873-873 被引量:3
标识
DOI:10.3390/polym16070873
摘要

Traditional polymer curing techniques present challenges such as a slow processing speed, high energy consumption, and considerable initial investment. Frontal polymerization (FP), a novel approach, transforms monomers into fully cured polymers through a self-sustaining exothermic reaction, which enhances speed, efficiency, and safety. This study focuses on acrylamide hydrogels, synthesized via FP, which hold significant potential for biomedical applications and 3D printing. Heat conduction is critical in FP, particularly due to its influence on the temperature distribution and reaction rate mechanisms, which affect the final properties of polymers. Therefore, a comprehensive analysis of heat conduction and chemical reactions during FP is presented through the establishment of mathematical models and numerical methods. Existing research on FP hydrogel synthesis primarily explores chemical modifications, with limited studies on numerical modeling. By utilizing Differential Scanning Calorimetry (DSC) data on the curing kinetics of polymerizable deep eutectic solvents (DES), this paper employs Malek’s model selection method to establish an autocatalytic reaction model for FP synthesis. In addition, the finite element method is used to solve the reaction–diffusion model, examining the temperature evolution and curing degree during synthesis. The results affirm the nth-order autocatalytic model’s accuracy in studying acrylamide monomer curing kinetics. Additionally, factors such as trigger temperature and solution initial temperature were found to influence the FP reaction’s frontal propagation speed. The model’s predictions on acrylamide hydrogel synthesis align with experimental data, filling the gap in numerical modeling for hydrogel FP synthesis and offering insights for future research on numerical models and temperature control in the FP synthesis of high-performance hydrogels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁的猕猴桃完成签到,获得积分10
1秒前
2秒前
Khaos_0929发布了新的文献求助10
2秒前
在水一方应助HJJHJH采纳,获得10
2秒前
2秒前
zyj完成签到,获得积分10
3秒前
如意代容完成签到,获得积分10
3秒前
3秒前
快乐的行云完成签到,获得积分20
4秒前
sunny发布了新的文献求助10
4秒前
zl发布了新的文献求助10
4秒前
4秒前
5秒前
脑洞疼应助还没有采纳,获得10
5秒前
5秒前
Lucas应助米歇尔采纳,获得10
6秒前
刘艺娜完成签到,获得积分10
6秒前
LiShin发布了新的文献求助10
6秒前
pan应助dhy采纳,获得10
6秒前
俭朴尔岚完成签到,获得积分10
7秒前
7秒前
辣汉三发布了新的文献求助10
7秒前
ohnono发布了新的文献求助20
9秒前
an完成签到,获得积分10
9秒前
FashionBoy应助xxxllllll采纳,获得10
9秒前
10秒前
着急的问凝完成签到 ,获得积分10
10秒前
cao_ming完成签到,获得积分10
10秒前
hanjja完成签到,获得积分20
10秒前
小张发布了新的文献求助10
11秒前
小马甲应助Idumori采纳,获得10
11秒前
11秒前
hhc发布了新的文献求助10
13秒前
平淡的井完成签到 ,获得积分10
13秒前
13秒前
13秒前
13秒前
XinyanYan完成签到,获得积分10
14秒前
14秒前
lanlan完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613781
求助须知:如何正确求助?哪些是违规求助? 4698996
关于积分的说明 14899849
捐赠科研通 4737544
什么是DOI,文献DOI怎么找? 2547228
邀请新用户注册赠送积分活动 1511145
关于科研通互助平台的介绍 1473636