亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of a Prediction Model for Need for Massive Transfusion During Surgery Using Intraoperative Hemodynamic Monitoring Data

医学 输血 血液制品 患者数据 血流动力学 外科 急诊医学 麻醉 数据库 计算机科学
作者
Seung Mi Lee,Garam Lee,Tae Kyong Kim,Trang T. Le,Jie Hao,Young Mi Jung,Chan‐Wook Park,Joong Shin Park,Jong Kwan Jun,Hyung‐Chul Lee,Dokyoon Kim
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (12): e2246637-e2246637 被引量:24
标识
DOI:10.1001/jamanetworkopen.2022.46637
摘要

Importance Massive transfusion is essential to prevent complications during uncontrolled intraoperative hemorrhage. As massive transfusion requires time for blood product preparation and additional medical personnel for a team-based approach, early prediction of massive transfusion is crucial for appropriate management. Objective To evaluate a real-time prediction model for massive transfusion during surgery based on the incorporation of preoperative data and intraoperative hemodynamic monitoring data. Design, Setting, and Participants This prognostic study used data sets from patients who underwent surgery with invasive blood pressure monitoring at Seoul National University Hospital (SNUH) from 2016 to 2019 and Boramae Medical Center (BMC) from 2020 to 2021. SNUH represented the development and internal validation data sets (n = 17 986 patients), and BMC represented the external validation data sets (n = 494 patients). Data were analyzed from November 2020 to December 2021. Exposures A deep learning–based real-time prediction model for massive transfusion. Main Outcomes and Measures Massive transfusion was defined as a transfusion of 3 or more units of red blood cells over an hour. A preoperative prediction model for massive transfusion was developed using preoperative variables. Subsequently, a real-time prediction model using preoperative and intraoperative parameters was constructed to predict massive transfusion 10 minutes in advance. A prediction model, the massive transfusion index, calculated the risk of massive transfusion in real time. Results Among 17 986 patients at SNUH (mean [SD] age, 58.65 [14.81] years; 9036 [50.2%] female), 416 patients (2.3%) underwent massive transfusion during the operation (mean [SD] duration of operation, 170.99 [105.03] minutes). The real-time prediction model constructed with the use of preoperative and intraoperative parameters significantly outperformed the preoperative prediction model (area under the receiver characteristic curve [AUROC], 0.972; 95% CI, 0.968-0.976 vs AUROC, 0.824; 95% CI, 0.813-0.834 in the SNUH internal validation data set; P < .001). Patients with the highest massive transfusion index (ie, >90th percentile) had a 47.5-fold increased risk for a massive transfusion compared with those with a lower massive transfusion index (ie, <80th percentile). The real-time prediction model also showed excellent performance in the external validation data set (AUROC of 0.943 [95% CI, 0.919-0.961] in BMC). Conclusions and Relevance The findings of this prognostic study suggest that the real-time prediction model for massive transfusion showed high accuracy of prediction performance, enabling early intervention for high-risk patients. It suggests strong confidence in artificial intelligence-assisted clinical decision support systems in the operating field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
36秒前
HYX发布了新的文献求助10
43秒前
顾矜应助HYX采纳,获得10
59秒前
1分钟前
沉默御姐完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
yangshu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
HYX发布了新的文献求助10
2分钟前
Suraim完成签到,获得积分10
2分钟前
闻巷雨完成签到 ,获得积分10
2分钟前
李爱国应助luo1采纳,获得10
2分钟前
二十一发布了新的文献求助10
2分钟前
Alisha完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
3分钟前
二十一完成签到,获得积分10
3分钟前
DFS发布了新的文献求助10
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
DFS完成签到,获得积分10
3分钟前
自觉问梅发布了新的文献求助10
3分钟前
自觉问梅完成签到,获得积分10
4分钟前
zpli完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
梅思寒完成签到 ,获得积分10
4分钟前
4分钟前
XingRang发布了新的文献求助10
4分钟前
大模型应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
科研通AI5应助XingRang采纳,获得10
5分钟前
伊叶之丘完成签到 ,获得积分10
6分钟前
6分钟前
唐泽雪穗发布了新的文献求助70
6分钟前
6分钟前
6分钟前
Bob完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078338
求助须知:如何正确求助?哪些是违规求助? 4297112
关于积分的说明 13387869
捐赠科研通 4119800
什么是DOI,文献DOI怎么找? 2256288
邀请新用户注册赠送积分活动 1260569
关于科研通互助平台的介绍 1194176