Development and Validation of a Prediction Model for Need for Massive Transfusion During Surgery Using Intraoperative Hemodynamic Monitoring Data

医学 输血 血液制品 患者数据 血流动力学 外科 急诊医学 麻醉 数据库 计算机科学
作者
Seung Mi Lee,Garam Lee,Tae Kyong Kim,Trang T. Le,Jie Hao,Young Mi Jung,Chan‐Wook Park,Joong Shin Park,Jong Kwan Jun,Hyung‐Chul Lee,Dokyoon Kim
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (12): e2246637-e2246637 被引量:24
标识
DOI:10.1001/jamanetworkopen.2022.46637
摘要

Importance Massive transfusion is essential to prevent complications during uncontrolled intraoperative hemorrhage. As massive transfusion requires time for blood product preparation and additional medical personnel for a team-based approach, early prediction of massive transfusion is crucial for appropriate management. Objective To evaluate a real-time prediction model for massive transfusion during surgery based on the incorporation of preoperative data and intraoperative hemodynamic monitoring data. Design, Setting, and Participants This prognostic study used data sets from patients who underwent surgery with invasive blood pressure monitoring at Seoul National University Hospital (SNUH) from 2016 to 2019 and Boramae Medical Center (BMC) from 2020 to 2021. SNUH represented the development and internal validation data sets (n = 17 986 patients), and BMC represented the external validation data sets (n = 494 patients). Data were analyzed from November 2020 to December 2021. Exposures A deep learning–based real-time prediction model for massive transfusion. Main Outcomes and Measures Massive transfusion was defined as a transfusion of 3 or more units of red blood cells over an hour. A preoperative prediction model for massive transfusion was developed using preoperative variables. Subsequently, a real-time prediction model using preoperative and intraoperative parameters was constructed to predict massive transfusion 10 minutes in advance. A prediction model, the massive transfusion index, calculated the risk of massive transfusion in real time. Results Among 17 986 patients at SNUH (mean [SD] age, 58.65 [14.81] years; 9036 [50.2%] female), 416 patients (2.3%) underwent massive transfusion during the operation (mean [SD] duration of operation, 170.99 [105.03] minutes). The real-time prediction model constructed with the use of preoperative and intraoperative parameters significantly outperformed the preoperative prediction model (area under the receiver characteristic curve [AUROC], 0.972; 95% CI, 0.968-0.976 vs AUROC, 0.824; 95% CI, 0.813-0.834 in the SNUH internal validation data set; P < .001). Patients with the highest massive transfusion index (ie, >90th percentile) had a 47.5-fold increased risk for a massive transfusion compared with those with a lower massive transfusion index (ie, <80th percentile). The real-time prediction model also showed excellent performance in the external validation data set (AUROC of 0.943 [95% CI, 0.919-0.961] in BMC). Conclusions and Relevance The findings of this prognostic study suggest that the real-time prediction model for massive transfusion showed high accuracy of prediction performance, enabling early intervention for high-risk patients. It suggests strong confidence in artificial intelligence-assisted clinical decision support systems in the operating field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
imshao完成签到,获得积分10
1秒前
活力靖琪完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
OsHTAS发布了新的文献求助10
1秒前
桐桐应助北冥有鱼采纳,获得10
2秒前
2秒前
科研通AI6应助zyw采纳,获得10
2秒前
晨晨关注了科研通微信公众号
3秒前
十八稀发布了新的文献求助10
3秒前
CodeCraft应助Precious采纳,获得10
3秒前
yishang发布了新的文献求助10
4秒前
4秒前
大模型应助接两块钱采纳,获得10
4秒前
刘小姐完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
WW发布了新的文献求助10
6秒前
aaa发布了新的文献求助10
6秒前
小二郎应助Zero采纳,获得10
6秒前
6秒前
6秒前
wanci应助lc采纳,获得30
6秒前
7秒前
7秒前
7秒前
8秒前
桐桐应助sunshine采纳,获得10
8秒前
夕荀发布了新的文献求助10
8秒前
hys完成签到,获得积分10
8秒前
朴素鸡发布了新的文献求助10
8秒前
8秒前
11发布了新的文献求助10
9秒前
10秒前
小涂完成签到,获得积分10
10秒前
隐形发布了新的文献求助10
10秒前
开朗醉波发布了新的文献求助10
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240