多元统计
自回归模型
计数数据
系列(地层学)
多元分析
统计
时间序列
光学(聚焦)
星型
数学
计量经济学
计算机科学
自回归积分移动平均
物理
光学
泊松分布
古生物学
生物
标识
DOI:10.1016/j.ecosta.2021.11.006
摘要
Autoregressive models are reviewed for the analysis of multivariate count time series. A particular topic of interest which is discussed in detail is that of the choice of a suitable distribution for a vectors of count random variables. The focus is on three main approaches taken for multivariate count time series analysis: (a) integer autoregressive processes, (b) parameter-driven models and (c) observation-driven models. The aim is to highlight some recent methodological developments and propose some potentially useful research topics.
科研通智能强力驱动
Strongly Powered by AbleSci AI