Real-Time Gait Phase Recognition Based on Time Domain Features of Multi-MEMS Inertial Sensors

步态 计算机科学 惯性测量装置 人工智能 步态分析 计算机视觉 加速度 时域 支持向量机 噪音(视频) 模拟 工程类 物理 经典力学 生物 图像(数学) 生理学
作者
Meiyan Zhang,Qisong Wang,Dan Liu,Boqi Zhao,Jiaze Tang,Jinwei Sun
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:16
标识
DOI:10.1109/tim.2021.3108174
摘要

Gait phase analysis is widely used in disease diagnosis, rehabilitation training and other fields by studying the characteristics of human gait. It systematically evaluates human body’s skeletal muscles and nerves with combined disciplines. MEMS (Micro Electromechanical System) inertial sensors are extensively used in attitude detection because of its high-precision, portability and good real-time performance in time-domain analysis. In this paper, we presented a multi-degree-of-freedom MEMS gait detection method, which resolved the problems of single sensor and limited gait phase. We designed a sensor-based gait signal acquisition system, in which gait data acquisition program and feature analysis algorithm were compiled to verify the feasibility of the proposed method. We performed coordinate transformation and corrected position information to eliminate the gait phase detection error caused by random noise interference. Acceleration and angular velocity information were collected from 20 experimenters. We applied an adaptive threshold gait phase detection algorithm to classify the gait information collected by single sensor. In order to improve the results of gait phase classification, we used multi-sensor redundant measurement to analyze characteristics of five gait phases. The acceleration and angular velocity information collected by the three sensors placed at instep, ankle and thigh were input into SVM. The classification results of the five gait phases are approximately 90%. Lastly, we built a human body structure model to simulate human motion in real time, realizing the real-time gait phase detection, which proves effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sgssm发布了新的文献求助10
刚刚
维特完成签到,获得积分10
刚刚
Riggle G发布了新的文献求助10
2秒前
追逐的疯完成签到,获得积分10
3秒前
sindex完成签到,获得积分10
3秒前
3秒前
111发布了新的文献求助10
4秒前
alexlpb完成签到,获得积分0
4秒前
胡辣椒麻鸡完成签到,获得积分10
5秒前
夏淼完成签到 ,获得积分10
5秒前
Singularity应助leslieo3o采纳,获得10
5秒前
小小沙完成签到,获得积分10
5秒前
13完成签到 ,获得积分10
5秒前
wangke完成签到,获得积分10
5秒前
领导范儿应助tong采纳,获得10
6秒前
茉莉园完成签到,获得积分10
6秒前
滴答完成签到,获得积分10
8秒前
balabalababa完成签到,获得积分10
8秒前
8秒前
9秒前
嗷嗷嗷啊完成签到,获得积分10
10秒前
mr完成签到 ,获得积分10
10秒前
大腚疯猪应助Zenobia采纳,获得20
10秒前
衣袖染墨色完成签到,获得积分10
10秒前
阿宅完成签到,获得积分10
11秒前
星星完成签到,获得积分10
11秒前
TT应助www258357采纳,获得10
11秒前
Siri完成签到,获得积分10
11秒前
12秒前
烟花应助任性的咖啡采纳,获得10
12秒前
xing发布了新的文献求助10
12秒前
kwakyong完成签到 ,获得积分20
15秒前
桑榆未晚完成签到,获得积分10
15秒前
joruruo完成签到,获得积分10
15秒前
tuantuantuan完成签到,获得积分10
15秒前
upup婧发布了新的文献求助10
15秒前
科研通AI5应助亻圭采纳,获得30
15秒前
等等完成签到,获得积分10
15秒前
澜生发布了新的文献求助10
16秒前
大大大大管子完成签到 ,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795803
求助须知:如何正确求助?哪些是违规求助? 3340820
关于积分的说明 10302439
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677679
邀请新用户注册赠送积分活动 805534
科研通“疑难数据库(出版商)”最低求助积分说明 762642