已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Spatial–Temporal Model Based Cross-Scene Action Recognition Using Commodity WiFi

计算机科学 人工智能 卷积神经网络 深度学习 数据流挖掘 学习迁移 记忆模型 循环神经网络 机器学习 模式识别(心理学) 钥匙(锁) 人工神经网络 计算机安全 操作系统 共享内存
作者
Biyun Sheng,Fu Xiao,Letian Sha,Lijuan Sun
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (4): 3592-3601 被引量:82
标识
DOI:10.1109/jiot.2020.2973272
摘要

With the popularization of Internet-of-Things (IoT) systems, passive action recognition on channel state information (CSI) has attracted much attention. Most conventional work under the machine-learning framework utilizes handcrafted features (e.g., statistic features) that are unable to sufficiently describe the sequence data and heavily rely on designers' experiences. Therefore, how to automatically learn abundant spatial-temporal information from CSI data is a topic worthy of study. In this article, we propose a deep learning framework that integrates spatial features learned from the convolutional neural network (CNN) into the temporal model multilayer bidirectional long short-term memory (Bi-LSTM). Specifically, CSI streams are segmented into a series of patches, from which spatial features are extracted by our designed CNN structure. Considering long-term dependencies between adjacent sequences, the fully connected layer of CNN for each patch is taken as the Bi-LSTM sequential input to further capture temporal features. Our model is appealing in that it can simultaneously learn temporal dynamics and convolutional perceptual representations. To the best of our knowledge, this is the first work to explore deep spatial-temporal features for CSI-based action recognition. Furthermore, in order to solve the problem that the trained model fully fails with environmental changes, we use the off-the-shelf model as the pretrained model and fine-tune it in the new scenario. The transfer method is able to realize cross-scene action recognition with low computational consumption and satisfactory accuracy. We carry out experiments on indoor data and the experimental results validate the effectiveness of our algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色忆雪发布了新的文献求助10
刚刚
Jenny发布了新的文献求助30
1秒前
可久斯基完成签到 ,获得积分10
1秒前
2秒前
丘比特应助彩色忆雪采纳,获得10
4秒前
结实初翠发布了新的文献求助10
4秒前
在水一方应助阿瓜采纳,获得10
7秒前
9秒前
Bin_Liu发布了新的文献求助10
10秒前
shimhjy应助稳重的峻熙采纳,获得20
14秒前
snah完成签到 ,获得积分10
14秒前
SSSSCCCCIIII完成签到,获得积分10
18秒前
Jasper应助Jenny采纳,获得100
18秒前
夏侯夏侯完成签到 ,获得积分10
21秒前
朱笑白完成签到 ,获得积分10
21秒前
沉静乾完成签到,获得积分10
21秒前
在水一方应助sln采纳,获得10
22秒前
罗rr完成签到 ,获得积分10
24秒前
zhi-pengbao完成签到,获得积分0
24秒前
今后应助zzzzzxh采纳,获得10
24秒前
dawei完成签到,获得积分10
28秒前
小马甲应助Bbsheep采纳,获得10
28秒前
29秒前
吃的饱饱呀完成签到 ,获得积分10
30秒前
Lsh173373完成签到 ,获得积分10
31秒前
poolgreen完成签到,获得积分10
33秒前
1111完成签到 ,获得积分10
34秒前
绝尘发布了新的文献求助10
34秒前
ooo完成签到 ,获得积分10
35秒前
田様应助原野采纳,获得10
35秒前
小鱼完成签到 ,获得积分10
36秒前
38秒前
余念安完成签到 ,获得积分10
40秒前
星辰大海应助结实初翠采纳,获得10
41秒前
安静的棉花糖完成签到 ,获得积分10
42秒前
sln发布了新的文献求助10
43秒前
科目三应助调皮的千万采纳,获得10
45秒前
53秒前
sln完成签到,获得积分10
56秒前
summer完成签到,获得积分10
57秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800840
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329131
捐赠科研通 3062791
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702