CN-China: Revised runoff curve number by using rainfall-runoff events data in China

地表径流 中国 中国大陆 径流曲线数 表(数据库) 环境科学 工作(物理) 估计 水文学(农业) 自然(考古学) 统计 数学 地理 计算机科学 工程类 数据挖掘 生态学 生物 机械工程 考古 岩土工程 系统工程
作者
Huishu Lian,Haw Yen,Jr‐Chuan Huang,Qingyu Feng,Lihuan Qin,Muhammad Amjad Bashir,Siqi Wu,A‐Xing Zhu,Jiafa Luo,Hongjie Di,Qiuliang Lei,Hongbin Liu
出处
期刊:Water Research [Elsevier BV]
卷期号:177: 115767-115767 被引量:63
标识
DOI:10.1016/j.watres.2020.115767
摘要

The curve number (CN) method developed by the United States Department of Agriculture (USDA) in 1954 is the most common adopted method to estimate surface runoff. For years, applicability of the CN method is a conundrum when implementing to other countries. Specifically, countries with more complex natural environment may require more dedicated adjustments. Therefore, the current CN look-up table provided by USDA might not be appropriate and could be questionable to be applied directly to regions elsewhere. Some studies have been conducted to modify CN values according to specified natural characteristics in scattered regions of mainland China. However, an integral and representative work is still not available to address potential concerns in general matters. In this study, a large set of rainfall-runoff monitoring data were collected to adjust CN values in 55 study sites across China. The results showed that the revised CN values are largely different from CN look-up table provided by USDA, which would lead to huge errors in runoff estimation. In this study, the revised CN (dubbed CN-China) provides better reference guidelines that are suitable for most natural conditions in China. In addition, scientists and engineers from other parts of the world can take advantage of the proposed work to enhance the quality of future programs related to surface runoff estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chen应助科研通管家采纳,获得20
刚刚
溫蒂应助潘文博采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得30
刚刚
巧克力coco完成签到,获得积分10
1秒前
科研助手6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
赘婿应助周小鱼采纳,获得10
1秒前
慕青应助阔达幼珊采纳,获得10
2秒前
潇洒的冰淇淋完成签到,获得积分10
3秒前
小宋应助科研巨头采纳,获得10
4秒前
妖哥发布了新的文献求助10
4秒前
4秒前
花开无声完成签到,获得积分10
4秒前
bkagyin应助普通人采纳,获得10
5秒前
熙熙沅沅完成签到 ,获得积分10
7秒前
体贴的小天鹅完成签到,获得积分10
7秒前
7秒前
8秒前
瘦瘦心情完成签到,获得积分10
9秒前
柯亦云完成签到 ,获得积分10
9秒前
腼腆的又槐完成签到 ,获得积分10
9秒前
10秒前
扶苏完成签到,获得积分20
11秒前
11秒前
科研通AI5应助麦子采纳,获得10
11秒前
汽水发布了新的文献求助10
12秒前
王向阳发布了新的文献求助10
14秒前
阔达幼珊发布了新的文献求助10
14秒前
16秒前
17秒前
18秒前
Yidong发布了新的文献求助10
18秒前
19秒前
桐桐应助热心市民小红花采纳,获得10
19秒前
Owen应助汽水采纳,获得10
19秒前
荔枝多酚完成签到,获得积分10
20秒前
Akim应助专注凌文采纳,获得10
21秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820741
求助须知:如何正确求助?哪些是违规求助? 3363591
关于积分的说明 10424100
捐赠科研通 3082016
什么是DOI,文献DOI怎么找? 1695425
邀请新用户注册赠送积分活动 815102
科研通“疑难数据库(出版商)”最低求助积分说明 768874