Deep learning for predicting disease status using genomic data

维数之咒 疾病 深度学习 人工智能 降维 自编码 过程(计算) 计算机科学 大数据 数据科学 计算生物学 机器学习 数据挖掘 操作系统
作者
Qianfan Wu,Adel Boueiz,Alican Bozkurt,Aria Masoomi,Allan Wang,Dawn L. DeMeo,Scott T. Weiss,Weiliang Qiu
标识
DOI:10.7287/peerj.preprints.27123v1
摘要

Predicting disease status for a complex human disease using genomic data is an important, yet challenging, step in personalized medicine. Among many challenges, the so-called curse of dimensionality problem results in unsatisfied performances of many state-of-art machine learning algorithms. A major recent advance in machine learning is the rapid development of deep learning algorithms that can efficiently extract meaningful features from high-dimensional and complex datasets through a stacked and hierarchical learning process. Deep learning has shown breakthrough performance in several areas including image recognition, natural language processing, and speech recognition. However, the performance of deep learning in predicting disease status using genomic datasets is still not well studied. In this article, we performed a review on the four relevant articles that we found through our thorough literature review. All four articles used auto-encoders to project high-dimensional genomic data to a low dimensional space and then applied the state-of-the-art machine learning algorithms to predict disease status based on the low-dimensional representations. This deep learning approach outperformed existing prediction approaches, such as prediction based on probe-wise screening and prediction based on principal component analysis. The limitations of the current deep learning approach and possible improvements were also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Math4396发布了新的文献求助10
2秒前
2秒前
3秒前
yvye发布了新的文献求助10
4秒前
Ag欢完成签到,获得积分20
5秒前
6秒前
烟花应助min采纳,获得10
7秒前
温洪玲发布了新的文献求助10
7秒前
Sylvia完成签到,获得积分10
8秒前
JamesPei应助wyuxilong采纳,获得10
10秒前
10秒前
evak发布了新的文献求助10
10秒前
slowslow完成签到 ,获得积分10
14秒前
15秒前
timo发布了新的文献求助10
16秒前
Hello应助xfy采纳,获得10
16秒前
赘婿应助Hiker采纳,获得10
17秒前
蛋糕了发布了新的文献求助10
20秒前
HJ2完成签到,获得积分10
22秒前
Roche完成签到,获得积分10
23秒前
23秒前
汉堡包应助侦察兵采纳,获得10
24秒前
24秒前
时尚战斗机完成签到,获得积分10
24秒前
25秒前
坚定初柳完成签到 ,获得积分10
26秒前
bjut发布了新的文献求助10
28秒前
kyt完成签到,获得积分10
30秒前
Denning完成签到,获得积分10
30秒前
30秒前
32秒前
邪恶青年完成签到,获得积分10
32秒前
天天快乐应助iacadaf采纳,获得10
33秒前
33秒前
言辞完成签到,获得积分10
33秒前
33秒前
搜集达人应助南宫映榕采纳,获得10
34秒前
36秒前
科研通AI5应助蛋糕了采纳,获得10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797740
求助须知:如何正确求助?哪些是违规求助? 3343209
关于积分的说明 10314887
捐赠科研通 3059968
什么是DOI,文献DOI怎么找? 1679185
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150