油胺
纳米晶
材料科学
锂(药物)
四方晶系
热分解
分散性
发光
氟化物
氟化锂
无机化学
晶体结构
结晶学
纳米技术
化学
有机化学
光电子学
高分子化学
医学
内分泌学
作者
Yaping Du,Yawen Zhang,Ling‐Dong Sun,Chun‐Hua Yan
出处
期刊:Dalton Transactions
[Royal Society of Chemistry]
日期:2009-01-01
卷期号: (40): 8574-8574
被引量:111
摘要
This paper reports the first systematical synthesis of near-monodisperse potassium and lithium rare earth (RE) fluoride (K(Li)REF4) nanocrystals with diverse shapes (cubic KLaF4 and KCeF4 wormlike nanowires, nanocubes and nanopolyhedra; cubic LiREF4 (RE = Pr to Gd, Y) nanopolyhedra; tetragonal LiREF4 (RE = Tb to Lu, Y) rhombic nanoplates) via co-thermolysis of Li(CF3COO) or K(CF3COO) and RE(CF3COO)3 in a hot oleic acid/oleylamine/1-octadecene solution. The effects of the solvent composition, reaction temperature and time on the crystal phase purity, shape, and size of the as-prepared nanocrystals have been investigated in detail. The formation of monodisperse nanocrystals is found to strongly depend upon the nature of both alkali metals from Li to K, and the rare earth series from La to Lu and Y. Based on the series of experimental results, a controlled-growth mechanism has also been proposed. In addition, the ease of doping of these as-synthesized host nanocrystals for designed luminescence properties is assessed. For example, monodisperse and single-crystalline Eu3+ doped KGdF4, Yb3+ and Er3+ co-doped LiYF4 nanocrystals redispersed in cyclohexane exhibit visible room-temperature red and green emissions under ultraviolet (UV) excitation and near infrared (NIR) 980 nm laser excitation, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI