协方差交集
估计员
协方差
传感器融合
协方差矩阵的估计
协方差矩阵
协方差函数
有理二次协方差函数
算法
蒙特卡罗方法
计算机科学
协方差函数
数学
人工智能
统计
作者
João Sequeira,Antonios Tsourdos,Samuel B. Lazarus
标识
DOI:10.1109/tim.2011.2141230
摘要
This paper addresses the robust estimation of a covariance matrix to express uncertainty when fusing information from multiple sensors. This is a problem of interest in multiple domains and applications, namely, in robotics. This paper discusses the use of estimators using explicit measurements from the sensors involved versus estimators using only covariance estimates from the sensor models and navigation systems. Covariance intersection and a class of orthogonal Gnanadesikan-Kettenring estimators are compared using the 2-norm of the estimates. A Monte Carlo simulation of a typical mapping experiment leads to conclude that covariance estimation systems with a hybrid of the two estimators may yield the best results.
科研通智能强力驱动
Strongly Powered by AbleSci AI