Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery

电化学 材料科学 阴极 析氧 拉曼光谱 电池(电) 自行车 化学工程 化学物理 锂(药物) 衍射 纳米技术 尖晶石 电极 化学 冶金 物理化学 物理 热力学 光学 工程类 内分泌学 功率(物理) 考古 历史 医学
作者
Jihyun Hong,Dong‐Hwa Seo,Sung‐Wook Kim,Hyeokjo Gwon,Song-Taek Oh,Kisuk Kang
出处
期刊:Journal of Materials Chemistry [The Royal Society of Chemistry]
卷期号:20 (45): 10179-10179 被引量:240
标识
DOI:10.1039/c0jm01971b
摘要

Recently Li1.2Ni0.2Mn0.6O2, one of the most promising cathode candidates for next generation Li rechargeable batteries, has been consistently investigated especially because of its high lithium storage capacity, which exceeds beyond the theoretical capacity based on conventional chemical concepts. Yet the mechanism and the origin of the overcapacity have not been clearly understood. Previous reports on simultaneous oxygen evolution during the first delithiation may only explain the high capacity of the first charge process, and not of the subsequent cycles. In this work, we report a clarified interpretation of the structural evolution of Li1.2Ni0.2Mn0.6O2 upon the electrochemical cycling, which is the key element in understanding its anomalously high capacity, through careful study of electrochemical profiles, ex situ X-ray diffraction, HR-TEM, Raman spectroscopy, and first principles calculation. Moreover, we successfully resolved the intermediate states of structural evolution upon electrochemical cycles by intentionally synthesizing sample with large particle size. All observations made through various tools lead to the result that spinel-like cation arrangement and lithium environment are gradually created and locally embedded in layered framework during repeated electrochemical cycling. Moreover, through analyzing the intermediate states of the structural transformation, this gradual structural evolution could explain the mechanism of the continuous development of the electrochemical activity below 3.5 V and over 4.25 V.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
5秒前
从容面包发布了新的文献求助10
6秒前
7秒前
7秒前
ll完成签到,获得积分10
9秒前
ccm应助草莓味的星星采纳,获得10
9秒前
11秒前
会会驳回了852应助
11秒前
12秒前
12秒前
13秒前
漂亮水池完成签到,获得积分10
14秒前
坦率幻灵完成签到,获得积分10
14秒前
千秋完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
liaotao发布了新的文献求助10
17秒前
荒野关注了科研通微信公众号
17秒前
年轻的老人完成签到 ,获得积分10
17秒前
奇点完成签到,获得积分10
18秒前
浮游应助djbj2022采纳,获得10
19秒前
坦率幻灵发布了新的文献求助10
19秒前
可爱的函函应助Miranda采纳,获得30
20秒前
独特的舞仙完成签到,获得积分20
22秒前
24秒前
草莓味的星星完成签到,获得积分10
24秒前
24秒前
Patty完成签到,获得积分10
25秒前
27秒前
27秒前
28秒前
朝朝暮夕完成签到 ,获得积分10
28秒前
Tigher发布了新的文献求助10
29秒前
29秒前
四夕完成签到 ,获得积分10
31秒前
FashionBoy应助小卡拉米采纳,获得10
34秒前
AAAAA发布了新的文献求助10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741