A novel media properties-based material removal rate model for magnetic field-assisted finishing

材料科学 磁场 复合材料 领域(数学) 机械工程 工程类 数学 物理 量子力学 纯数学
作者
Chun Wai Kum,Takashi Satō,Jiang Guo,Kui Liu,David Butler
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:141: 189-197 被引量:38
标识
DOI:10.1016/j.ijmecsci.2018.04.006
摘要

Magnetic field assisted finishing (MFAF) is a category of non-conventional finishing processes that use magnetic field to manipulate finishing media typically consisting of magnetic particles and non-magnetic abrasives suspended in a carrier fluid.In order to better control the process, an improved understanding of the actual removal process is needed.This paper will introduce a new material removal rate model for magnetic fieldassisted finishing (MFAF) that will aim do so.The model considers the complexity of finishing media used in MFAF processes, where two different types of particles are presented and interact with each other.The proposed material removal rate expression is based on contact mechanics and is a function of the number of active magnetic particles, number of active abrasives, force per magnetic particle, and force per abrasive.Expressions for particle numbers have been developed by considering an ideal facecentred cubic configuration for the magnetic particle network, while expressions for forces have been developed based on a proposed framework for the particle interactions.The model has been verified experimentally for a double-magnet MFAF process by varying the abrasive size and abrasive concentration.When the abrasive size was increased from 0.6 μm to 15 μm, the material removal rate decreased which is consistent with the theoretical trend given by the model.Then, when abrasive concentration, given by the abrasives-to-carbonyl-iron volumetric ratio, was increased from 0 to 0.768, the material removal rate initially increased and then reached a maximum when the volume ratio is 0.259 before decreasing with further increase of the volume ratio.This is also in agreement with the theoretical trend given by the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发嗲的火龙果完成签到,获得积分10
1秒前
1秒前
abao完成签到 ,获得积分10
2秒前
2秒前
niuniu完成签到,获得积分10
2秒前
上官若男应助是真的采纳,获得10
3秒前
4秒前
兑现发布了新的文献求助10
4秒前
ZKcrane完成签到,获得积分10
5秒前
5秒前
个性尔槐发布了新的文献求助10
8秒前
8秒前
雪白鸿涛发布了新的文献求助10
9秒前
9秒前
Orange应助龚幻梦采纳,获得10
9秒前
shi发布了新的文献求助10
10秒前
10秒前
13秒前
Perrylin718发布了新的文献求助10
13秒前
15秒前
鹏友完成签到,获得积分10
16秒前
16秒前
研友_LMgz0Z发布了新的文献求助10
16秒前
shi完成签到,获得积分20
17秒前
暖暖完成签到,获得积分10
18秒前
20秒前
Peri发布了新的文献求助10
20秒前
liuliu发布了新的文献求助10
23秒前
无花果应助辛勤的孤容采纳,获得10
23秒前
24秒前
五月拾旧完成签到,获得积分10
25秒前
Leon完成签到,获得积分10
25秒前
dd发布了新的文献求助10
26秒前
Wuwuwu发布了新的文献求助10
26秒前
端庄南莲关注了科研通微信公众号
27秒前
打打应助合适台灯采纳,获得10
28秒前
三三发布了新的文献求助10
28秒前
29秒前
ZZQ发布了新的文献求助10
31秒前
bkagyin应助ymygdz采纳,获得10
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842615
求助须知:如何正确求助?哪些是违规求助? 3384669
关于积分的说明 10536580
捐赠科研通 3105212
什么是DOI,文献DOI怎么找? 1710077
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110