磷化氢
化学
磷烷
氢化物
氧化膦
药物化学
计算化学
立体化学
有机化学
催化作用
金属
摘要
Computational studies were performed to explain the highly varied stereoselectivities obtained in the reductions of acyclic phosphine oxides and sulfides by different chlorosilanes. The reductions of phosphine oxides by HSiCl(3), HSiCl(3)/Et(3)N, and Si(2)Cl(6) and the reductions of phosphine sulfides by Si(2)Cl(6) (all in benzene) were explored by means of B3LYP, B3LYP-D, and SCS-MP2 calculations. For the reductions of phosphine oxides by HSiCl(3), the calculations support the mechanism proposed by Horner in which a hydride is transferred from silicon to phosphorus through a four-centered, frontside transition state. This mechanism leads to retention of stereochemistry at phosphorus. For the other three reductions, two classes of mechanisms were explored. Phosphorane-based mechanisms that were previously proposed by Mislow and involve SiCl(3)(-) were compared with novel alternative mechanisms that involve nonionic rearrangement processes. In one of these, donor-stabilized SiCl(2) is formed as an intermediate. The calculations support a phosphorane-based mechanism for the reductions of phosphine oxides by HSiCl(3)/Et(3)N and Si(2)Cl(6) (which proceed with inversion) but favor the rearrangement pathways for the reductions of phosphine sulfides by Si(2)Cl(6) (which proceed with retention).
科研通智能强力驱动
Strongly Powered by AbleSci AI