Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma

异柠檬酸脱氢酶 胶质瘤 神经组阅片室 磁共振弥散成像 医学 无线电技术 分级(工程) 磁共振成像 接收机工作特性 核医学 有效扩散系数 放射科 内科学 神经学 核磁共振 癌症研究 生物 物理 精神科 生态学
作者
Minjae Kim,So Yeong Jung,Ji Eun Park,Yeongheun Jo,Seo Young Park,Soo Jung Nam,Jeong Hoon Kim,Ho Sung Kim
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:30 (4): 2142-2151 被引量:99
标识
DOI:10.1007/s00330-019-06548-3
摘要

To determine whether diffusion- and perfusion-weighted MRI–based radiomics features can improve prediction of isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in lower grade gliomas (LGGs) Radiomics features (n = 6472) were extracted from multiparametric MRI including conventional MRI, apparent diffusion coefficient (ADC), and normalized cerebral blood volume, acquired on 127 LGG patients with determined IDH mutation status and grade (WHO II or III). Radiomics models were constructed using machine learning–based feature selection and generalized linear model classifiers. Segmentation stability was calculated between two readers using concordance correlation coefficients (CCCs). Diagnostic performance to predict IDH mutation and tumor grade was compared between the multiparametric and conventional MRI radiomics models using the area under the receiver operating characteristics curve (AUC). The models were tested using a temporally independent validation set (n = 28). The multiparametric MRI radiomics model was optimized with a random forest feature selector, with segmentation stability of a CCC threshold of 0.8. For IDH mutation, multiparametric MR radiomics showed similar performance (AUC 0.795) to the conventional radiomics model (AUC 0.729). In tumor grading, multiparametric model with ADC features showed higher performance (AUC 0.932) than the conventional model (AUC 0.555). The independent validation set showed the same trend with AUCs of 0.747 for IDH prediction and 0.819 for tumor grading with multiparametric MRI radiomics model. Multiparametric MRI radiomics model showed improved diagnostic performance in tumor grading and comparable diagnostic performance in IDH mutation status, with ADC features playing a significant role. • The multiparametric MRI radiomics model was comparable with conventional MRI radiomics model in predicting IDH mutation. • The multiparametric MRI radiomics model outperformed conventional MRI in glioma grading. • Apparent diffusion coefficient played an important role in glioma grading and predicting IDH mutation status using radiomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AhhHuang应助葛怀锐采纳,获得20
1秒前
听南发布了新的文献求助10
1秒前
chayue发布了新的文献求助10
1秒前
xiaoou完成签到,获得积分20
3秒前
。。发布了新的文献求助10
3秒前
英俊的铭应助步蘅采纳,获得30
3秒前
zhh完成签到,获得积分10
5秒前
6秒前
chayue完成签到,获得积分10
8秒前
Singularity应助听南采纳,获得10
8秒前
茕凡桃七完成签到,获得积分10
9秒前
9秒前
liu_完成签到,获得积分20
11秒前
徐梦曦完成签到,获得积分10
12秒前
羊布吃稻关注了科研通微信公众号
12秒前
1134695021完成签到,获得积分10
13秒前
13秒前
15秒前
科目三应助liu_采纳,获得10
16秒前
firsttt完成签到,获得积分10
16秒前
奋斗的盼柳完成签到 ,获得积分10
16秒前
17秒前
huang完成签到,获得积分10
21秒前
纯情的馒头完成签到,获得积分10
21秒前
22秒前
Arvilzzz发布了新的文献求助10
23秒前
科研通AI5应助勤劳的筝采纳,获得10
24秒前
24秒前
風声鶴唳完成签到,获得积分10
24秒前
hoongyan完成签到 ,获得积分10
25秒前
饭团不吃鱼完成签到,获得积分10
28秒前
28秒前
tao完成签到,获得积分10
32秒前
32秒前
内卷与外包完成签到,获得积分10
32秒前
pms完成签到,获得积分10
34秒前
coolkid完成签到 ,获得积分10
38秒前
尊敬的半梅完成签到 ,获得积分10
39秒前
liu_发布了新的文献求助10
39秒前
百香果bxg发布了新的文献求助10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810555
求助须知:如何正确求助?哪些是违规求助? 3355069
关于积分的说明 10373953
捐赠科研通 3071569
什么是DOI,文献DOI怎么找? 1687034
邀请新用户注册赠送积分活动 811374
科研通“疑难数据库(出版商)”最低求助积分说明 766626