Galvanic Replacement of Liquid Metal Galinstan with Copper for the Synthesis of Core-Shell Cuga-Cu2o Nanomaterials

催化作用 原电池 纳米材料 吸附 电化学 选择性 火法冶金 材料科学 化学 化学工程 金属 可再生能源 碳纤维 纳米技术 无机化学 冶金 电极 有机化学 复合材料 冶炼 电气工程 物理化学 复合数 工程类
作者
Olawale Oloye,Geoffrey Will,Anthony P. O’Mullane
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (41): 1980-1980
标识
DOI:10.1149/ma2019-02/41/1980
摘要

Anthropogenic carbon dioxide (CO 2 ), resulting from the world’s persistent reliance on fossil fuels as the principal source of energy, has perturbed and induced an imbalance in the natural carbon-cycle. This increased CO 2 emission into the environment has been implicated in global warming and other environmental issues 1 . Therefore, coupling a sustainable energy system with carbon dioxide reduction to produce valuable chemical compounds is being thoroughly investigated 1 . Among the techniques developed for selective CO 2 conversion, electrochemical CO 2 reduction is regarded as one of the most appealing due to mild operating conditions and use of renewable energy to power the process. Theoretically, electrochemical CO 2 reduction largely depends on the adsorption energies of intermediate species, therefore, metal-based catalysts (Pt, Au, Pd, Ag, Sn, Cu, In, and etc.) are commonly employed which can influence the overall system selectivity. In particular, Cu-based catalysts have shown reasonable activity and potential for selectivity for this reaction owing to moderate adsorption energy for intermediate species on Cu. In addition, Cu is one of the few inexpensive metals that can catalytically convert CO 2 to a variety of useful chemicals under environmental conditions (room temperature and atmospheric pressure) via a multi-electron transfer process. Although Cu catalysts show interesting CO 2 reduction properties, they still suffer from selectivity issues to generate a desired single product at scale 2 . A recent development is in the area of room temperature liquid metals where the catalytic activity of liquid metal Galinstan has begun to be explored 3 . Although in its infancy, we hypothesized that a multi-metallic electrocatalyst of galinstan (GaInSn) and Cu could be active for electrocatalytic and photocatalytic reactions such as CO 2 reduction and dye degradation considering that Ga alloys with most metals and should therefore influence the electronic properties of Cu. Previous work has shown that the catalytic activity of multi-metallic electrocatalysts is superior to their mono and bimetallic electrocatalysts counterparts 4 . Hence, multi-metallic electrocatalysts exhibit different electronic structures, crystallinity as a result of the interplay of geometric, ligand and electronic effects 5 . To date, no report is available in the open literature reporting the alloying of liquid metal GaInSn and Cu via galvanic replacement. Herein, we report the simple synthesis of a multi-metallic nanostructure comprising of a CuGa core with trace In and Sn and a surface layer of Cu 2 O and Ga 2 O 3 . The material was characterized using Scanning Electron Microscopy (SEM), Grazing Incidence X-ray Diffraction (GIXRD), X-ray Photoelectron Spectroscopy (XPS), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and Transmission Electron Microscopy (TEM). The SAED and TEM images indicate that the core alloy is polycrystalline with well-defined lattice fringes with the presence of crystalline Cu 2 O and an amorphous region (resulting from gallium oxide). The presence of surface semiconducting oxides with an underlying metal core should in principle be an appropriate system for separating charge carriers under photoexcitation thereby facilitating organic molecule degradation studies. The multi-metallic nanostructure was therefore engineered towards electrochemical CO 2 reduction and photocatalytic pollutant degradation. The preliminary investigation on the photocatalytic activity of this material using Toluidine Blue (TB) under visible light irradiation indicates excellent photocatalytic activity. References N. S. Lewis and D. G. Nocera, Proceedings of the National Academy of Sciences of the United States of America , 2006, 103 , 15729-15735. H. Xie, T. Wang, J. Liang, Q. Li and S. Sun, Nano Today , 2018, 21 , 41-54. F. Hoshyargar, H. Khan, K. Kalantar-zadeh and A. P. O'Mullane, Chemical Communications , 2015, 51 , 14026-14029. E. A. Redekop, V. V. Galvita, H. Poelman, V. Bliznuk, C. Detavernier and G. B. Marin, ACS Catalysis , 2014, 4 , 1812-1824. X. L. Tian, L. Wang, P. Deng, Y. Chen and B. Y. Xia, Journal of Energy Chemistry , 2017, 26 , 1067-1076. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助莲枳榴莲采纳,获得10
3秒前
AlexKie发布了新的文献求助10
4秒前
晓布衣完成签到,获得积分10
4秒前
6秒前
6秒前
激动的晓筠完成签到 ,获得积分10
7秒前
小景007完成签到,获得积分10
8秒前
郭俊秀完成签到 ,获得积分10
9秒前
小憨兔cc发布了新的文献求助10
11秒前
jason93完成签到 ,获得积分10
14秒前
14秒前
peng完成签到,获得积分10
14秒前
科研通AI2S应助ahu采纳,获得30
14秒前
文艺的枫叶完成签到 ,获得积分10
15秒前
15秒前
说道的理给说道的理的求助进行了留言
17秒前
17秒前
典雅问寒应助how采纳,获得10
18秒前
19秒前
汉堡包应助医学蠕虫采纳,获得10
21秒前
22秒前
dddd完成签到 ,获得积分10
23秒前
小帅发布了新的文献求助10
24秒前
任侠传发布了新的文献求助10
25秒前
光亮向露发布了新的文献求助10
26秒前
28秒前
29秒前
30秒前
31秒前
行者无疆完成签到,获得积分10
32秒前
zy完成签到,获得积分10
32秒前
tracywan完成签到,获得积分10
32秒前
欧阳静芙完成签到,获得积分10
32秒前
股价发布了新的文献求助10
36秒前
tracywan发布了新的文献求助10
36秒前
CodeCraft应助zy采纳,获得10
37秒前
orixero应助薇儿采纳,获得10
40秒前
乐意李完成签到,获得积分10
40秒前
极限地带完成签到 ,获得积分10
41秒前
43秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841977
求助须知:如何正确求助?哪些是违规求助? 3384000
关于积分的说明 10532144
捐赠科研通 3104257
什么是DOI,文献DOI怎么找? 1709550
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878