Dynamic Graph Convolution Network for Traffic Forecasting Based on Latent Network of Laplace Matrix Estimation

计算机科学 图形 数据挖掘 利用 卷积(计算机科学) 理论计算机科学 构造(python库) 人工智能 人工神经网络 计算机网络 计算机安全
作者
Kan Guo,Yongli Hu,Sean Qian,Yanfeng Sun,Junbin Gao,Baocai Yin
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 1009-1018 被引量:143
标识
DOI:10.1109/tits.2020.3019497
摘要

Traffic forecasting is a challenging problem in the transportation research field as the complexity and non-stationary changing of the traffic data, thus the key to the issue is how to explore proper spatial and temporal characteristics. Based on this thought, many creative methods have been proposed, in which Graph Convolution Network (GCN) based methods have shown promising performance. However, these methods depend on the graph construction, which mainly uses the prior knowledge of the road network. Recently, some works realized the fact of the road network graph changing and tried to construct dynamic graphs for GCN, but they do not fully exploit the spatial and temporal properties of the traffic data in the graph construction. In this paper, we propose a novel dynamic graph convolution network for traffic forecasting, in which a latent network is introduced to extract spatial-temporal features for constructing the dynamic road network graph matrices adaptively. The proposed method is evaluated on several traffic datasets and the experimental results show that it outperforms the state of the art traffic forecasting methods. The website of the code is https://github.com/guokan987/DGCN.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
梧桐树完成签到,获得积分10
2秒前
852应助苏暖采纳,获得10
3秒前
4秒前
吖梦梦完成签到,获得积分10
4秒前
颜蓝完成签到,获得积分20
4秒前
GGZ完成签到,获得积分10
4秒前
4秒前
Akim应助liujizhuo采纳,获得10
5秒前
5秒前
Nozomi完成签到,获得积分10
6秒前
丘比特应助小杨同学采纳,获得10
6秒前
扎心完成签到,获得积分10
7秒前
齐次的雨完成签到,获得积分10
7秒前
Parsifal完成签到,获得积分10
7秒前
科研助手6应助Iridesent0v0采纳,获得10
8秒前
北秋完成签到,获得积分10
8秒前
科研通AI5应助欢喜妙旋采纳,获得10
9秒前
123完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
chopin完成签到,获得积分10
11秒前
YaoX发布了新的文献求助10
11秒前
zzt完成签到,获得积分10
11秒前
stqs发布了新的文献求助10
11秒前
baix发布了新的文献求助10
12秒前
Hello应助111采纳,获得10
12秒前
犬狗狗完成签到 ,获得积分10
12秒前
别管完成签到,获得积分10
12秒前
12秒前
csy发布了新的文献求助10
12秒前
13秒前
15秒前
格格完成签到 ,获得积分10
15秒前
科研通AI5应助健忘的蓉采纳,获得10
15秒前
研友_Zzrx6Z完成签到,获得积分10
15秒前
zz完成签到,获得积分20
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841415
求助须知:如何正确求助?哪些是违规求助? 3383528
关于积分的说明 10530178
捐赠科研通 3103621
什么是DOI,文献DOI怎么找? 1709337
邀请新用户注册赠送积分活动 823110
科研通“疑难数据库(出版商)”最低求助积分说明 773816