已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The effects of technological factors on carbon emissions from various sectors in China—A spatial perspective

外商直接投资 投资(军事) 农业 技术变革 溢出效应 温室气体 第二经济部门 自然资源经济学 中国 经济地理学 业务 经济 经济 地理 宏观经济学 考古 政治 生物 生态学 法学 政治学
作者
Xiaohui Yang,Zhen Jia,Yang Zhang,Yuan Xiu-yue
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:301: 126949-126949 被引量:41
标识
DOI:10.1016/j.jclepro.2021.126949
摘要

The modernization of the different economic sectors has drastically increased energy consumption and CO2 emissions in developing countries, leading to a literature stream on the relationship between technological progress and the carbon emissions from the various sectors. However, most related policies do not consider the diversity of technological sources. As such, this study develops a comprehensive model that combines the expanded stochastic impacts by regression on population, affluence, and technology (STIRPAT) and the geographically and temporally weighted (GWTR) models to explore the spatial effects of three technology progress channels (research and development investment, technology spillover related to FDI, and DS) on the CO2 emissions in China from six sectors during 2000–2017. The results show that research and development investment has an inhibitory effect on the CO2 emissions from the agricultural, industrial, and wholesale sectors, and a catalytic effect for those from the construction, transportation, and residential sectors. The DS has a negative impact on the CO2 emissions from the agricultural, construction, and wholesale sectors, but a positive one for those from the industrial, transportation, and residential sectors. Finally, foreign direct investment has a positive effect on the CO2 emissions from all sectors (except for transportation). Therefore, this study shows that all the effects of the three technological progress channels on the carbon emissions from different sectors display spatial correlations and differences. In conclusion, policymakers should tailor policies to the various sectors in the different provinces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
听曲散步完成签到,获得积分10
2秒前
倾城发布了新的文献求助10
3秒前
yf完成签到 ,获得积分10
3秒前
7秒前
你好发布了新的文献求助10
7秒前
8秒前
lelele发布了新的文献求助10
11秒前
13秒前
chart完成签到 ,获得积分10
13秒前
cc完成签到 ,获得积分10
15秒前
搜集达人应助123采纳,获得10
15秒前
ltt123完成签到 ,获得积分10
15秒前
17秒前
快乐藤椒堡完成签到 ,获得积分10
18秒前
福娃选手发布了新的文献求助10
21秒前
Akim应助mingjiang采纳,获得10
21秒前
21秒前
26秒前
无花果应助11111111111采纳,获得10
26秒前
28秒前
药宫完成签到,获得积分10
29秒前
wzh发布了新的文献求助20
30秒前
32秒前
隐形曼青应助llp采纳,获得10
32秒前
33秒前
李健应助wzh采纳,获得10
35秒前
wanci应助11111111111采纳,获得10
38秒前
39秒前
若雨凌风应助伶俐的高烽采纳,获得20
42秒前
疯狂的沛岚完成签到,获得积分10
45秒前
笨笨西牛完成签到 ,获得积分0
46秒前
Eason小川发布了新的文献求助10
46秒前
fa完成签到,获得积分10
47秒前
共享精神应助Yuksn采纳,获得10
56秒前
卑微小何完成签到,获得积分10
56秒前
57秒前
甜美世平发布了新的文献求助10
59秒前
lu0000xuan发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833613
求助须知:如何正确求助?哪些是违规求助? 3376091
关于积分的说明 10491598
捐赠科研通 3095611
什么是DOI,文献DOI怎么找? 1704479
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771775