Deep Neural Networks and Tabular Data: A Survey

深度学习 计算机科学 人工智能 机器学习 人工神经网络 深层神经网络 推论 领域(数学) 分类 数据科学 数学 纯数学
作者
Vadim Borisov,Tobias Leemann,Kathrin Seßler,Johannes Haug,Martin Pawelczyk,Gjergji Kasneci
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7499-7519 被引量:667
标识
DOI:10.1109/tnnls.2022.3229161
摘要

Heterogeneous tabular data are the most commonly used form of data and are essential for numerous critical and computationally demanding applications. On homogeneous datasets, deep neural networks have repeatedly shown excellent performance and have therefore been widely adopted. However, their adaptation to tabular data for inference or data generation tasks remains highly challenging. To facilitate further progress in the field, this work provides an overview of state-of-the-art deep learning methods for tabular data. We categorize these methods into three groups: data transformations, specialized architectures, and regularization models. For each of these groups, our work offers a comprehensive overview of the main approaches. Moreover, we discuss deep learning approaches for generating tabular data and also provide an overview over strategies for explaining deep models on tabular data. Thus, our first contribution is to address the main research streams and existing methodologies in the mentioned areas while highlighting relevant challenges and open research questions. Our second contribution is to provide an empirical comparison of traditional machine learning methods with 11 deep learning approaches across five popular real-world tabular datasets of different sizes and with different learning objectives. Our results, which we have made publicly available as competitive benchmarks, indicate that algorithms based on gradient-boosted tree ensembles still mostly outperform deep learning models on supervised learning tasks, suggesting that the research progress on competitive deep learning models for tabular data is stagnating. To the best of our knowledge, this is the first in-depth overview of deep learning approaches for tabular data; as such, this work can serve as a valuable starting point to guide researchers and practitioners interested in deep learning with tabular data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助rain采纳,获得10
1秒前
Eric发布了新的文献求助10
1秒前
1秒前
111发布了新的文献求助10
2秒前
3秒前
拉拉应助nnnn采纳,获得100
3秒前
爆米花应助qq采纳,获得10
4秒前
Ava应助dakjdia采纳,获得10
4秒前
wxyshare应助小李采纳,获得10
4秒前
破晓星完成签到,获得积分10
5秒前
5秒前
所所应助念安采纳,获得10
6秒前
MICO完成签到,获得积分10
6秒前
紧张的不悔完成签到,获得积分10
6秒前
阿啵呲嘚呃of咯完成签到 ,获得积分10
7秒前
7秒前
8秒前
耶嘿完成签到,获得积分20
8秒前
破晓星发布了新的文献求助10
9秒前
shen完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助30
11秒前
12秒前
mc发布了新的文献求助10
12秒前
万能图书馆应助Till采纳,获得10
12秒前
ww完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Carmen完成签到 ,获得积分10
14秒前
充电宝应助Fly采纳,获得10
15秒前
15秒前
15秒前
科研通AI6.1应助粥粥采纳,获得10
15秒前
yznfly举报tony求助涉嫌违规
15秒前
haha发布了新的文献求助10
16秒前
王博涵完成签到 ,获得积分10
16秒前
牛诗悦完成签到,获得积分10
17秒前
wanci应助李子恒采纳,获得10
17秒前
xyg发布了新的文献求助10
18秒前
云朵0810发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752683
求助须知:如何正确求助?哪些是违规求助? 5476106
关于积分的说明 15374754
捐赠科研通 4891582
什么是DOI,文献DOI怎么找? 2630561
邀请新用户注册赠送积分活动 1578788
关于科研通互助平台的介绍 1534675