亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Neural Networks and Tabular Data: A Survey

深度学习 计算机科学 人工智能 机器学习 人工神经网络 深层神经网络 推论 领域(数学) 分类 数据科学 数学 纯数学
作者
Vadim Borisov,Tobias Leemann,Kathrin Seßler,Johannes Haug,Martin Pawelczyk,Gjergji Kasneci
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7499-7519 被引量:458
标识
DOI:10.1109/tnnls.2022.3229161
摘要

Heterogeneous tabular data are the most commonly used form of data and are essential for numerous critical and computationally demanding applications. On homogeneous data sets, deep neural networks have repeatedly shown excellent performance and have therefore been widely adopted. However, their adaptation to tabular data for inference or data generation tasks remains challenging. To facilitate further progress in the field, this work provides an overview of state-of-the-art deep learning methods for tabular data. We categorize these methods into three groups: data transformations, specialized architectures, and regularization models. For each of these groups, our work offers a comprehensive overview of the main approaches. Moreover, we discuss deep learning approaches for generating tabular data, and we also provide an overview over strategies for explaining deep models on tabular data. Thus, our first contribution is to address the main research streams and existing methodologies in the mentioned areas, while highlighting relevant challenges and open research questions. Our second contribution is to provide an empirical comparison of traditional machine learning methods with eleven deep learning approaches across five popular real-world tabular data sets of different sizes and with different learning objectives. Our results, which we have made publicly available as competitive benchmarks, indicate that algorithms based on gradient-boosted tree ensembles still mostly outperform deep learning models on supervised learning tasks, suggesting that the research progress on competitive deep learning models for tabular data is stagnating. To the best of our knowledge, this is the first in-depth overview of deep learning approaches for tabular data; as such, this work can serve as a valuable starting point to guide researchers and practitioners interested in deep learning with tabular data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榴莲小胖完成签到,获得积分10
1秒前
2秒前
6秒前
科目三应助明亮的忆灵采纳,获得10
13秒前
Hqing完成签到 ,获得积分10
15秒前
CHEE完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
29秒前
万能图书馆应助树脂小柴采纳,获得10
29秒前
35秒前
39秒前
梅思寒完成签到 ,获得积分10
40秒前
RSU完成签到,获得积分10
42秒前
44秒前
和谐智宸完成签到 ,获得积分10
46秒前
DJHKFD发布了新的文献求助10
47秒前
思源应助周建宁采纳,获得10
53秒前
所所应助DJHKFD采纳,获得10
56秒前
李健的粉丝团团长应助LONG采纳,获得10
56秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Yan完成签到,获得积分10
1分钟前
1分钟前
LONG发布了新的文献求助10
1分钟前
树脂小柴发布了新的文献求助10
1分钟前
聪明勇敢有力气完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助树脂小柴采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
SciGPT应助对对碰采纳,获得10
1分钟前
1分钟前
李在猛完成签到 ,获得积分10
1分钟前
DJHKFD发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
雁塔完成签到 ,获得积分10
1分钟前
1分钟前
对对碰发布了新的文献求助10
1分钟前
xiaokang123应助科研通管家采纳,获得10
1分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885719
求助须知:如何正确求助?哪些是违规求助? 3427844
关于积分的说明 10757020
捐赠科研通 3152707
什么是DOI,文献DOI怎么找? 1740539
邀请新用户注册赠送积分活动 840289
科研通“疑难数据库(出版商)”最低求助积分说明 785280