已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning algorithms for temperature prediction in two-phase immersion-cooled data centres

沉浸式(数学) 算法 计算机科学 材料科学 人工智能 机器学习 数学 几何学
作者
Pratheek Suresh,C. Balaji
出处
期刊:International Journal of Numerical Methods for Heat & Fluid Flow [Emerald Publishing Limited]
卷期号:34 (8): 2917-2942 被引量:5
标识
DOI:10.1108/hff-08-2023-0468
摘要

Purpose As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture. Design/methodology/approach This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination ( R 2 ) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated. Findings The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%. Research limitations/implications The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers. Originality/value The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艾泽拉斯的囚徒完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
2秒前
hh完成签到,获得积分20
3秒前
4秒前
哭泣傲云完成签到 ,获得积分20
4秒前
桓某人发布了新的文献求助10
5秒前
安静的瑾瑜完成签到 ,获得积分10
5秒前
韩明佐发布了新的文献求助10
5秒前
5秒前
5秒前
枫叶-ZqqC发布了新的文献求助10
6秒前
XXH完成签到 ,获得积分10
6秒前
6秒前
7秒前
科研通AI5应助清脆的恶天采纳,获得10
7秒前
8秒前
cd完成签到,获得积分20
9秒前
panda完成签到,获得积分20
9秒前
Emma Lee发布了新的文献求助10
9秒前
吴念完成签到,获得积分20
10秒前
桓某人完成签到,获得积分10
10秒前
11秒前
111发布了新的文献求助10
11秒前
hangover完成签到 ,获得积分10
11秒前
吴念发布了新的文献求助10
15秒前
华仔应助无辜书南采纳,获得10
16秒前
苏卡不列颠完成签到,获得积分10
16秒前
11完成签到 ,获得积分10
16秒前
土豪的摩托完成签到 ,获得积分10
17秒前
一一发布了新的文献求助10
19秒前
浮游应助骆十八采纳,获得30
19秒前
20秒前
田様应助苏卡不列颠采纳,获得10
21秒前
22秒前
小马甲应助dly采纳,获得10
22秒前
亦hcy完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062734
求助须知:如何正确求助?哪些是违规求助? 4286445
关于积分的说明 13357088
捐赠科研通 4104266
什么是DOI,文献DOI怎么找? 2247395
邀请新用户注册赠送积分活动 1252983
关于科研通互助平台的介绍 1183935