Comparative Analysis of SLAM Algorithms for Mechanical LiDAR and Solid-State LiDAR

激光雷达 测距 遥感 移动机器人 计算机科学 里程计 同时定位和映射 人工智能 机器人 地理 电信
作者
Baoding Zhou,Doudou Xie,Shoubin Chen,Haoquan Mo,Chunyu Li,Qingquan Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (5): 5325-5338 被引量:18
标识
DOI:10.1109/jsen.2023.3238077
摘要

With the advancement of light detection and ranging (LiDAR) technology in recent years, various new types of LiDAR have emerged, and the price of LiDAR equipment has gradually decreased. At present, low-cost solid-state LiDARs are gradually occupying the market. To evaluate the performance of two LIDARs for simultaneous localization and mapping. This study investigated the application of solid-state LiDAR and mechanical LiDAR in localization and mapping systems and comparatively analyzed their advantages and disadvantages. We selected some classic open-source algorithms [such as LiDAR odometry and mapping (A-LOAM)] to evaluate the performance of mechanical LiDAR and solid-state LiDAR in localization. The experimental data are adopted from some representative open-source data (such as KITTI data) and real data collected by Shenzhen University. The results showed that the localization accuracy of solid-state LiDAR was lower than that of mechanical LiDAR when the mobile robot moved to the corner and faced square to the wall at close range. Moreover, the localization accuracy of solid-state LiDAR was the same as or even higher than that of mechanical LiDAR when the mobile robots had small changes in the field of view (FOV) and the mobile robot moved along straight lines or other tracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责乐安发布了新的文献求助10
1秒前
2秒前
zy3637完成签到,获得积分10
3秒前
llllll发布了新的文献求助20
4秒前
4秒前
5秒前
自强不息完成签到,获得积分10
5秒前
小蘑菇应助呆萌芙蓉采纳,获得10
6秒前
Taylor完成签到,获得积分20
6秒前
6秒前
wanci应助杨惠子采纳,获得10
7秒前
7秒前
7秒前
可爱的函函应助哒哒哒采纳,获得10
8秒前
瑶果子发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
负责乐安完成签到,获得积分10
11秒前
Luantyi发布了新的文献求助30
11秒前
sisea完成签到,获得积分10
12秒前
拼搏冷卉发布了新的文献求助10
12秒前
体贴的戾发布了新的文献求助10
13秒前
13秒前
见贤思齐发布了新的文献求助10
14秒前
bkagyin应助急支糖浆采纳,获得10
14秒前
14秒前
15秒前
小明完成签到,获得积分10
16秒前
wanci应助我不李姐采纳,获得10
16秒前
科研小亮发布了新的文献求助10
16秒前
Luantyi完成签到,获得积分10
17秒前
ianlaikk发布了新的文献求助10
17秒前
18秒前
杨惠子发布了新的文献求助10
20秒前
Dipsy完成签到,获得积分10
20秒前
21秒前
耶耶耶完成签到,获得积分10
21秒前
见贤思齐完成签到,获得积分10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070052
求助须知:如何正确求助?哪些是违规求助? 4291260
关于积分的说明 13369921
捐赠科研通 4111515
什么是DOI,文献DOI怎么找? 2251558
邀请新用户注册赠送积分活动 1256731
关于科研通互助平台的介绍 1189263