Comparative Analysis of SLAM Algorithms for Mechanical LiDAR and Solid-State LiDAR

激光雷达 测距 遥感 移动机器人 计算机科学 里程计 同时定位和映射 人工智能 机器人 地理 电信
作者
Baoding Zhou,Doudou Xie,Shoubin Chen,Haoquan Mo,Chunyu Li,Qingquan Li
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 5325-5338 被引量:18
标识
DOI:10.1109/jsen.2023.3238077
摘要

With the advancement of light detection and ranging (LiDAR) technology in recent years, various new types of LiDAR have emerged, and the price of LiDAR equipment has gradually decreased. At present, low-cost solid-state LiDARs are gradually occupying the market. To evaluate the performance of two LIDARs for simultaneous localization and mapping. This study investigated the application of solid-state LiDAR and mechanical LiDAR in localization and mapping systems and comparatively analyzed their advantages and disadvantages. We selected some classic open-source algorithms [such as LiDAR odometry and mapping (A-LOAM)] to evaluate the performance of mechanical LiDAR and solid-state LiDAR in localization. The experimental data are adopted from some representative open-source data (such as KITTI data) and real data collected by Shenzhen University. The results showed that the localization accuracy of solid-state LiDAR was lower than that of mechanical LiDAR when the mobile robot moved to the corner and faced square to the wall at close range. Moreover, the localization accuracy of solid-state LiDAR was the same as or even higher than that of mechanical LiDAR when the mobile robots had small changes in the field of view (FOV) and the mobile robot moved along straight lines or other tracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助ShengzhangLiu采纳,获得10
刚刚
后进者完成签到,获得积分10
刚刚
诚心桐完成签到,获得积分10
刚刚
一哈哈完成签到,获得积分10
刚刚
xy小侠女完成签到,获得积分10
1秒前
xin完成签到,获得积分20
1秒前
沉默凌寒完成签到,获得积分10
1秒前
liyang发布了新的文献求助10
2秒前
2秒前
小马甲应助afbb采纳,获得10
3秒前
raven完成签到,获得积分10
3秒前
开朗发卡发布了新的文献求助10
3秒前
3秒前
静谧完成签到,获得积分10
3秒前
4秒前
笨笨的小虾米完成签到,获得积分10
4秒前
4秒前
852应助华杰采纳,获得10
5秒前
5秒前
赘婿应助热心的沂采纳,获得10
6秒前
鱼鱼鱼完成签到,获得积分10
6秒前
科研通AI6应助啦啦啦采纳,获得10
8秒前
8秒前
张张发布了新的文献求助10
8秒前
10秒前
瞬间发布了新的文献求助10
10秒前
Sekiro发布了新的文献求助20
10秒前
11秒前
无极微光应助蒸馏水采纳,获得20
11秒前
研友_nVNBVn发布了新的文献求助10
11秒前
Lin发布了新的文献求助10
12秒前
英俊的铭应助鱼鱼鱼采纳,获得10
12秒前
12秒前
12秒前
赵yy应助谦让冬日采纳,获得30
12秒前
量子星尘发布了新的文献求助10
13秒前
昨夜风宸发布了新的文献求助10
13秒前
完美世界应助Siri采纳,获得10
13秒前
peng发布了新的文献求助10
14秒前
琪琪发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490624
求助须知:如何正确求助?哪些是违规求助? 4589068
关于积分的说明 14423619
捐赠科研通 4521153
什么是DOI,文献DOI怎么找? 2477182
邀请新用户注册赠送积分活动 1462514
关于科研通互助平台的介绍 1435329